>> 当前位置:首页 - 产品 - 山西相变储热器 服务至上 强野机械科技供应

山西相变储热器 服务至上 强野机械科技供应

信息介绍 / Information introduction

随着能源紧缺问题日益紧张,储能技术越来越受到重视,储热技术能够实现能源供给与需求在时间、空间以及强度上的匹配,提高能源利用效率,山西相变储热器,山西相变储热器,全球90%的能源预算围绕热的转换、输运和储存,所以在热能储存技术在热量调配和提高能源综合利用效率方面有着非常重要的作用,基于相变材料的潜热储存具有储热密度高、放热过程温度近似恒定、结构简单、成本低等优点,山西相变储热器。然而,相变材料的热导率较低严重限制其充/放热功率及热响应速度,进而制约实际应用。相变储热系统技术主要可分为吸附/吸收的热化学相变储热系统、可逆反应的热化学相变储热系统。山西相变储热器

有机类储热材料在固体状态时成形性较好,一般不易出现过冷和相分离现象,并且对材料的腐蚀性较小,性能比较稳定、毒性小、成本低。但其导热系数小,导致对热量变化的响应速度慢,同时密度较低,从而单位体积的储能能力较小,并且有机物一般熔点较低,易挥发、易燃、易被空气中的氧气缓慢氧化老化。有机类储热材料与无机类陶瓷材料及碳材料复合是解决有机类储热材料存在问题的有效途径。近期对无机盐储热材料的研究表明,对不同配方的新型熔盐的研究探索了潜在的、有应用前景的优良材料,对现有的熔盐体系进行掺杂实现性能优化也成为一个新的突破点,逐渐获得关注。对这些潜在材料的进一步研究和试验生产,为适应正在急速发展的各种储能系统的不同要求提供了可行途径。山西相变储热器储热系统能够充分利用廉价的低谷电,降低运行费用。

储热技术包含两个方面的要素,其一就是热能的转化,它既包括热能与其它形式的能之间的转化,也包括热能在不同物质载体之间的传递;其二为热能的储存,即热能在物质载体上的存在状态,理论上表现为其热力学特征。虽然储热有显热储热、潜热储热和化学反应储热等多种形式,但本质上均是物质中大量分子热运动时的能量。因而从一般意义上讲,热能存储的热力学性质与热力学性质相同,均有量和质两个衡量特征,即热力学中的第1定律和第二定律。

按照相变温度范围的不同,相变储热材料可分为高温、中温、低温相变储热材料。各温度范围间并没有明显清晰的界限,常发生较大范围的重叠,但因实际应用时需要储存的热源有一定的温度范围,这种按相变温度分类的方法更实用。通常,把相变温度为120℃和400℃作为低、中、高温相变储热材料的温度节点。低温相变储热——相变温度在120℃以下,此类材料在建筑和日常生活中的应用较为普遍,包括空调制冷、太阳能低温热利用及供暖空调系统,尤其以热水应用的极为普遍。这类相变材料主要包括无机水合盐、有机物和高的分子等。在此应用温度范围内的蓄热技术基本成熟。储热具有单位质量储热量大、温度波动小、化学稳定性好和安全性好等特点。

储热用于提升分布式电源汇聚能力。美、日、意等国利用储热控制变电站与上级电网的能量交换,减少可再生能源并网产生的功率倒送问题。通过对大量储热单元的统一管理和控制,形成大规模的储热能力,但未充分体现双向互动能力。例如:集中充电站可同时为多辆电动汽车电池充电,可实现负荷低谷存储电能,负荷高峰或紧急情况下向电网反馈电能,调节峰谷负荷。电力系统需求多样,应用环境复杂,为满足不同工况需求,储热选型应结合本体的技术特点。按照放电时间长短,储热可分为功率型和能量型,针对不同工况储热选型的分类。相变储热系统未来发展面临技术与科学挑战。山西相变储热器

热力学基础,相变储热系统技术包括两个方面的要素,其一是热能的转化,其二为热能的储存。山西相变储热器

显热储热方式发生化学反应时,可以有催化剂,也可以没有催化剂一种高密度高能量的储热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存。潜热储热(相变储热)是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术。利用相变材料相变时单位质量潜热,储热量非常大能把热能贮存起来加以利用,如空间太阳能发电用储热器,深夜电力调峰用储热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。山西相变储热器

免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。

查看全部介绍
推荐产品  / Recommended Products