>> 当前位置:首页 - 产品 - 河道治理厌氧氨氧化菌排名 客户至上 山东浩妙生物工程供应

河道治理厌氧氨氧化菌排名 客户至上 山东浩妙生物工程供应

信息介绍 / Information introduction

厌氧氨氧化菌倍增时间长,细胞产率低,对环境条件敏感,导致厌氧氨氧化菌的富集培养较为困难,限制了厌氧氨氧化工艺的大规模应用,河道治理厌氧氨氧化菌排名,河道治理厌氧氨氧化菌排名。从国内外的研究来看,河道治理厌氧氨氧化菌排名,实验室小试规模的厌氧氨氧化菌富集培养研究已经较为成熟,通过优化操作条件,选择合适的富集培养装置,优化营养配方,以及采取控制和强化措施等,可获得具有很高活性和高密度的厌氧氨氧化菌颗粒状富集培养物,再将其流加或接种中试或者生产性装置,可极大缩短厌氧氨氧化反应器的启动时间,从而将厌氧氨氧化工艺逐步推广应用于实际废水的处理。厌氧氨氧化菌的生物学特性有哪些呢?河道治理厌氧氨氧化菌排名

    厌氧氨氧化工艺在处理高氨氮废水,尤其是低碳氮比废水方面具有高效、经济、节能等明显特点,并具有良好的应用前景和商业价值。随着厌氧氨氧化研究的深入,厌氧氨氧化组合工艺也发展起来,广泛应用于高氨氮废水。但是在实际应用过程中,受到接种物来源、基质自阻止、外源性毒物和工艺启动时间长等因素的影响,厌氧氨氧化反应器的启动比较困难。主要是厌氧氨氧化菌生长缓慢,制约了工艺的快速发展。现阶段启动厌氧氨氧化大多采用厌氧污泥或者缺氧污泥,以成功培养出厌氧氨氧化菌或具有厌氧氨氧化效应的颗粒污泥为标志。国内外更多以生物膜作为载体启动厌氧氨氧化反应器,培养得到的厌氧氨氧化菌多为颗粒状,反应器较大,操作繁琐,培养效果有好有坏。对絮状污泥而言,可利用很小的反应器,进行大批量培养,做到培养条件实时可控。 湖南造纸厌氧氨氧化菌检测厌氧氨氧化菌的分离及其生长特性的研究。

氮含量是水质控制检测中一项重要指标,工业时代,水体富氧化问题纷纷涌现,所以氮污染的掌控成为污水处理技术的研究热点之一。以往污水处置通常是硝化反硝化进程,需要大量碱与碳源供应,不但成本投入多,还会造成环境污染。随着厌氧氨氧化技术的出现,这些问题都有了有效改善。厌氧氨氧化处置工艺是一种高效的污水处置技术,在污泥液废水处置、城市生活污水处置、牲畜养殖污水处置、低氨氮废水处置等方面均有所应用,并且效果理想。然而,其在实际操作进程中依然存在一些漏洞,需要不断优化和改良,找到去除对厌氧氨氧化菌成长不利的因素。

    厌氧氨氧化菌在生物脱氮领域具有非常明显的优势:脱氮能力强、降低污水处理厂曝气能耗、降低反硝化碳源需求以及污泥处理费用低等。但是,厌氧氨氧化工业应用的主要难点在于厌氧氨氧化菌属于化能自养菌,生长缓慢,倍增时间长,细胞产率低,对环境条件敏感,培养启动过程十分缓慢。同时,目前还没有促进厌氧氨氧化菌快速增殖的手段,那么强化厌氧氨氧化反应器快速启动的策略主要集中于减少体系中厌氧氨氧化菌的流失,例如,添加各类填料或者采用膜出水。厌氧氨氧化大规模工业应用时,厌氧氨氧化启动成本除前述难解决的时间成本外,还有药剂成本。在规模化培养时,如果采用通用方法配置厌氧氨氧化培养基共涉及16种药剂:NaNO2、(NH4)2SO4、MgSO4·7H2O、KH2PO4、CaCl2·2H2O、NaHCO3、EDTA、FeSO4·7H2O、ZnSO4·7H2O、CoCl2·6H2O、MnCl2·4H2O、CuSO4·5H2O、(NH4)6Mo7O24·4H2O、NiCl2·6H2O、NaSeO4·5H2O、H3BO4,大量使用药剂将产生巨大的经济成本。 厌氧氨氧化菌栖息在缺氧的海洋中,它们对全球氮循环有着很重要的贡献。

    到了2001年12月,来自德国不莱梅马克斯普朗克研究所的MarcelKuypers(从事海洋微生物研究)和它的同事决定去黑海对厌氧氨氧化菌进行调查,而黑海则是全球比较大的缺氧流域。这个团队从水下85到100米深的地方取水样,因为在该深水层氧气是不存在,并且发现该水层中只含有微量的氨。正如推测的那样,海洋中也发现了厌氧氨氧化菌,这也是他们在海洋中发现该菌。厌氧氨氧化菌是异常高效的,并且认为海洋中氮气的产生,一半是来自厌氧氨氧化菌。该现象迫我们使对全球氮循环进行一次重大的反思,并且慢慢说服海洋学家反硝化菌并不是产生氮气的群体。在确定了厌氧氨氧化菌的存在后,我们也同样对它们在这个星球上的能力进行了验证。发现,厌氧氨氧化菌无处不在的,在淡水中、咸水中、公海、海洋沉积物以及污水处理厂都有发现。“有一日你发现了一个被认为是不可能的现象,”Kuenen说,“然后10年后这种现象被证实是无处不在的,并且在全球范围都是很重要的。它们甚至可能躲在你的厨房水槽的排水系统中。厌氧氨氧化菌的驯化培养。河道治理厌氧氨氧化菌排名

厌氧氨氧化菌在污水处理中实际应用。河道治理厌氧氨氧化菌排名

    厌氧氨氧化菌(ANAMMOX)的反应机理:厌氧氨氧化(ANAM—MOX,anaerobicammomumoxidation))是指在厌氧的条件下,微生物直接以NH4+作为电子供体,以作为电子受体,将NH4+和N02-转变成N2的生物氧化过程。1977年,Broda根据热力学反应自由能计算,推测自然界中可能存在两种自养微生物将NH4+氧化成N2。1990年,荷兰Delft技术大学Kluyver生物技术实验室开发出ANAMMOx工艺,即在厌氧条件下,以N03-为电子受体,将氨转化为N2;1995年,Mulder等发现荷兰Delft大学一个污水脱氮流化床反应器中NH4+消失,且随着NH4+和NO3-的消耗,生成N2。并通过氮平衡和氧化还原平衡实验证实其发生了以NO3作电子供体、N03-为电子受体的氧化还原反应。1997年,vandeGram等通过N标记实验发现,厌氧氨氧化是以NO2而不是N03-为电子受体。 河道治理厌氧氨氧化菌排名

免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。

查看全部介绍
推荐产品  / Recommended Products