20世纪40年代以后,由于喷气推进和火箭技术的应用,飞行器速度超过声速,进而实现了航天飞行,上海快速接头流体元件,上海快速接头流体元件,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。以这些理论为基础,20世纪40年代,关于药物或天然气等介质中发生的爆轰波又形成了新的理论,为研究原药物、药物等起爆后,激波在空气或水中的传播,发展了波理论。此后,流体力学又发展了许多分支,上海快速接头流体元件,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相(气液或气固)流等等。对于完全没有粘性的流体称为理想流体。上海快速接头流体元件
非牛顿流体显示出的另一奇妙性质,是湍流减阻。人们观察到,如果在牛顿流体中加入少量聚合物,则在给定的速率下,可以看到明显的压差降。湍流一直是困扰理论物理和流体力学界未解决的难题。然而在牛顿流体中加入少量高聚物添加剂,却出现了减阻效应。有人报告:在加入高聚物添加剂后,测得猝发周期加大了,认为是高分子链的作用。虽然湍流减阻效应的道理尚未弄得很清楚,却己有不错的应用。在消防水中添加少量聚乙烯氧化物,可使消防车**喷出的水的扬程提高一倍以上。应用高聚物添加剂,还能改善气蚀发生过程及其破坏作用。上海快速接头流体元件对于能够忽略其压缩性的流体称为不可压缩流体。
流体性质: 质量和密度 流体和其他物质一样,具有质量和重量。单位体积的流体所具有的质量称为流体的密度,用ρ来表示。在流体中任意点处的密度均相同,则该流体为均匀流体,均匀流体的密度表示为,ρ=m/v 。对于非均匀流体,因为各点处的密度不同,所以按下式计算的只是流体的平某一点处的密度应为:dm——所取某微元件的的质量(kg) dV——质量为dm的微元件的体积(m3)流体的比容指的是单位质量的流体所占有的体积,用v表示。显然,它与密度互为倒数。
流体,是与固体相对应的一种物体形态,是液体和气体的总称。由大量的、不断地作热运动而且无固定平衡位置的分子构成的,它的基本特征是没有一定的形状并且具有流动性。流体与其他物质一样具有质量和密度,且有一定的可压缩性,液体可压缩性很小,而气体的可压缩性较大,在流体的形状改变时,流体各层之间也存在一定的运动阻力(即粘滞性)。当流体的粘滞性和可压缩性很小时,可近似看作是理想流体,它是人们为研究流体的运动和状态而引入的一个理想模型,是液压传动和气压传动的介质。流体形状在粗细中不断变化,即流畅又丰富。
流体的表现形式: 流体的表现形式也是流体的结构形式,可以大致分为二种:水滴形式、粗细形式、每种虽然形式不同但都能表达出流体该有的性,将他们分析清楚才能更好的运用到设计当中去。 水滴形式: 流体的形状可以是水滴的形状,也可以是断流的形状,粘稠的形状。这种形式的流体给人液体的质感,通常用在一些健康类产品或饮料产品的logo上面。表达较自然的元素,也同时表达产品的期望。 粗细形式: 流体形状在粗细中不断变化,即流畅又丰富。这种形式有细的紧凑,也有粗的宽广,所以能不断调动人的心里,非常丰富。通常在数据控件上运用波纹这种粗细形式的流体。流体质点所处的空间坐标,作为区分不同流体质点的标号参数,该位置坐标称为拉格朗日变数或随体坐标。山东卷管器流体控制
流体倘流速增加,越来越快,流体开始出波动性摆动,此情况称之为过渡流。上海快速接头流体元件
1944年Weissenberg在英国伦敦帝国学院,公开表演了一个有趣的实验:在一只有黏弹性流体(非牛顿流体的一种)的烧杯里,旋转实验杆。对于牛顿流体,由于离心力的作用,液面将呈凹形;而对于黏弹性流体,却向杯中心流动,并沿杆向上爬,液面变成凸形,甚至在实验杆旋转速度很低时,也可以观察到这一现象。在设计混合器时,必须考虑爬杆效应的影响。同样,在设计非牛顿流体的输运泵时,也应考虑和利用这一效应。非牛顿流体除具有以上几种有趣的性质外,还有其他一些受到人们重视的奇妙特性,如拔丝性(能拉伸成极细的细丝,可见"春蚕到死丝方尽"一文),剪切变稀(可见"腱鞘囊肿治好记"一文),连滴效应(其自由射流形成的小滴之间有液流小杆相连),液流反弹等。上海快速接头流体元件
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。