>> 当前位置:首页 - 产品 - 杂环化合物哌啶药物中间体 上海毕得医药科技供应

杂环化合物哌啶药物中间体 上海毕得医药科技供应

信息介绍 / Information introduction

亚硝基广用于有机合成中,1a–c主要用作亲电试剂和1,3-偶极子,1d–f也具有立体定向方式,1d–h和自旋阱; 1a–c,i–k具有也被用作羰基的活性当量。1c,l–m,2a然而,关于α-氨基硝酮的报道很少。2它们可以衍生自腈和羟胺,2a来自亚氨基甲酸酯或a-氯亚胺,2g来自羟胺和亚甲基胺,2g,3d来自仲胺2f和亚硝基化合物,以及其他硝酮。2b研究了互变异构体2a,3d和a-氨基硝酮的晶体结构2a,3d,但*报道了使用此类化合物Prabhakar及其同事[2a]提供了合成中的化合物,他们在单烷基化和二酰化反应中利用了α-氨基硝酮的亲核中心。从3-氧代丁酸N-吡啶-2-基酰胺和亚硝基苯以良好的产率获得稳定的α-酰胺基-α-氨基硝酮。 然后,将α-酰胺基-α-氨基硝酮用作新的通用构建基块,以通过双亲电子试剂和双亲核试剂获得各种杂环。 以二碘甲烷为试剂,杂环化合物哌啶药物中间体,形成1.2,5-恶二嗪衍生物,而与芳香族1,2-,1,3-和1,4-二胺反应生成喹喔啉,喹唑啉,杂环化合物哌啶药物中间体,嘧啶和二苯并[d,f] [1,杂环化合物哌啶药物中间体, 3]二氮杂derivatives衍生物。Ala-Glu / IGLN模拟物的设计与合成:假肽的杂环基块。杂环化合物哌啶药物中间体

N-杂环碳烯催化的硝基烯烃反应参考资料描述了N-杂环卡宾(NHC)催化的酰基阴离子当量(Stetter反应),均烯酸酯和烯醇酸酯与反应性硝基烯烃作为Michael受体的新进展。 系统地介绍了使用硝基烯烃进行NHC催化的C-C键形成反应的独特策略,用于合成合成构件,特别是不对称方法。 还讨论了单电子转移反应与将NHCs用作有机催化剂相结合的进展,其中硝基烯烃充当重要的偶联伙伴。 本段落所描述汇集了这一重要领域的成就以及未来需要的工作。通过5-Aminouracil,醛的一次性凝结合成了一系列6,7,8,10-四氢嘧啶[5,4-B]喹啉-2,4,9-(1H,3H,5H) 。微波辐射下的DMF中的DIMEDONE,无催化剂。将产物6a,d氧化为7,8-二氢嘧啶-1,9-(1h,3h,6h) - 图11a,b。在Anhydrons碳酸钾存在下,在碳酸氢钾存在下,用乙基碘处理6a,d和/或11a,b分别得到乙基化衍生物12a,b和13a,b。通过元素分析,IR,MS,(1)H和(13)C NMR光谱来确认产品的结构。手性氨基膦哌啶应用聚卤代硝基丁二烯作为多功能砌块,用于生物可靶向替代的N-杂环化合物。

寻找生物活性化合物是药物合成中的驱动力。由于进入临床研究的大多数新分子都包含至少一个杂环部分-主要是N杂环部分-这些环系统的修饰在药物开发过程中起着重要作用。因此,总是始终需要新颖的杂环系统,以寻找新的命中结构和优化前导化合物。尽管理论上是无限制的,但实际上,由于技术和经济原因,今*有很少数量的杂环可用于药物化学。 我们对新的且易于获得的杂环构件的兴趣来自我们对ongoing吨酮(=二苯并-γ-吡喃酮)衍生物的持续研究,在该研究中,一个苯环被吡唑核取代,另一个苯环被另一个杂环部分取代。这些有趣的亚结构存在于几种生物活性化合物中,例如抗溃疡药amlexanox(Aphthasol™)或A2亚型选择性腺苷受体拮抗剂A 。因此,我们研究了几种合成策略,以促进这种生物学上有趣的支架的改变。虽然我们的主要研究基于合成方法以方便地改变吡唑重要处的取代基(尤其是C-3,N-1和N-2位的取代基),但我们还是将注意力转向了分子骨架的修饰以及在其他位置引入取代基的可能性。这些方法的组合显然将允许访问专门定制的分子。尽管如此,据报道,到目前为止,只有少数骨架-主要是三环骨架,如可能的四个吡啶。

以氟代咪唑鎓盐为前体,经两步烷基化反应,设计合成了一种含氟官能团的聚合N-杂环卡宾(NHC)-Zn配合物(F-PNHC-Zn)。 所得的F-PNHC-Zn用于在有机硅烷存在下使用CO2作为C1结构单元来催化胺的甲酰化和甲基化,在相同条件下,其显示出比相应的无氟PNHC-Zn高得多的活性。 具有吸电子基团和给电子基团的N-甲基苯胺都可以> 90%的转化率转化为相应的甲酰胺和甲胺。 即使在非常低的CO2压力下(用N-2稀释0.05 MPa)也可以实现N-甲基苯胺的定量转化。 而且,F-PNHC-Zn对于这些反应非常稳定并且易于回收。Te-N二次键合相互作用力场的参数化及其在基于杂环砌块的超分子结构设计中的应用。

研究了用亲电子试剂活化磷烯烃的P 2 C键,作为制备和表征不寻常的有机磷化合物的方法。用HOTf(0.5当量)处理RP?CHtBu(1?a:R = tBu; 1?b:R = 1-金刚烷基)得到二磷鎓盐[RP?CHtBu?PR(CH2tBu)] OTf([2?a] OTf和[2?b] OTf),每个都包含一个三元P2C环。相反,在1?a或1?b中添加MeOTf(0.5当量)可得到二磷鎓盐[RP?CHtBu?P(Me)R?CHtBu] OTf([3?a] OTf和[3?b] OTf)包含四元P2C2杂环。在光谱上鉴定出三氟甲磺酸[[tBuP(CH2tBu)] OTf([5?a] OTf)和三氟甲磺酸[[tBu(Me)P?CHtBu] OTf([7?a] OTf)是形成[2]的中间体分别为[a] +和[3a] +。可以用2-丁炔捕获三氟甲磺酸trap中间体,得到磷鎓盐[MeC 2 CMe 2 tBuPCH 2 tBu] OTf([6αa] OTf)。用过量的MeOTf处理二磷鎓[3αa] OTf,得到[Me2P2CHtBu?PMetBu?CHtBu](OTf)2([4αa](OTf)2)氟代官能化聚合物正杂环碳烯 - 锌络合物:用CO 2作为C1建筑块的丙氨酸甲基化和甲基化的有效催化剂。手性膦相关哌啶化合物价格

苯基乙酮作为杂环合成中的砌块:合成多官能取代的吡啶,熔融吡啶。杂环化合物哌啶药物中间体

通过叠氮化钠与2H-二氮杂-2-羰基氯的反应合成2H-氮杂胺-2-羰基叠氮化物,通过叠氮化钠与2H-二氮杂-2-羰基氯的反应合成 - 催化5-氯异恶唑的异构化。由Ni(11)制备的2-(偶氮羰基)-1H-吡咯 - 用1,3-二酮的2-(壬烷烃)-2H-氮杂对催化反应,在沸腾的TBUOH中容易进行窗帘重排,得到BOC保护α-氨基吡咯高产。在惰性溶剂中加热2-(氮羰基)-1H-辐注的短时间内,导致苯并和杂融合1H-吡咯的高产量形成[2,3-B] Pyridin6(7h) - 酮通过涉及邻烷基酯的邻芳芳基或Hetaryl取代基的6 pi电循环形成,由偶氮羰基的凝聚重排产生的异氰酸酯的N = C键。 1-乙酰基-2-甲基-3H-吡咯的PD催化的交联反应[2,3-C]异喹啉-5-基三氟甲酸酯,易于由相应的吡咯喹酮制备,导致各种5-取代的3H-吡咯[2,3-c]异喹啉,产量优异。杂环化合物哌啶药物中间体

上海毕得医药科技有限公司成立于2007年,总部位于上海市杨浦区理工大学国家大学科技园,是一家以医药中间体相关产品的研发、生产、销售及合成定制为主的****。自公司成立以来,始终坚持信誉至上,质量过硬的企业信条,产品被应用于生命科学、有机化学、材料科学、分析化学与其他学科的研发及生产领域,销售范围遍及全球。目前,公司与诸多国内**医药研发单位建立了合作伙伴关系。

公司位于上海理工大学科技园的行政办公中心面积达1,700平米,在药谷设立的研发中心面积1,800平米,包括化学合成实验室和公斤级实验室,并配有现代化仓储物流中心。公司优势产品包括特色杂环化合物、含氟化合物、手性化合物、氨基酸及其衍生物、硼酸及其衍生物等,已有多项科研项目获得国家发明专利。

为确保产品质量,公司引进了先进齐全的分析测试设备,包括400MHz核磁共振仪(NMR)、电感耦合等离子体发射光谱仪(ICP)、液质联用仪(LCMS)等,并配以严格的质量管理体系。公司签有具备GMP资质的合作工厂,配备专业的研发团队,形成了从小试、中试到工业化规模的生产能力,满足客户定制合成、目录试剂采购及合成外包生产的需求。

免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。

查看全部介绍
推荐产品  / Recommended Products