使1,3-二苯基-丙烷-2-酮与等摩尔量的二甲基甲酰胺二甲基缩醛反应,得到烯胺酮4。这与另一等分子量的二甲基甲酰胺二甲基缩醛反应,得到二烯胺酮5。化合物4与氰基硫代乙酰胺和氰基乙酰胺缩合得到2- 硫代-和2-氧代吡啶-3-腈衍生物6a,b。 化合物6a与cc-氯acetone8反应生成噻吩并[2,3-b]吡啶衍生物10,该衍生物进一步环化成4,7,8-三取代吡啶并[2',3':2,QUINAP相关哌啶相关性质,3]噻吩并[4,5] -d]嘧啶12。化合物4还通过在乙酸铵存在下与乙酰乙酸乙酯在乙酸中反应而得到2,5,6-三取代的烟酸乙酯13。 二烯胺5与乙酸,乙酸铵/乙酸,苯肼和5-氨基-3-甲基吡唑反应生成3,5-二苯基-吡喃-4-酮15a,QUINAP相关哌啶相关性质,3,QUINAP相关哌啶相关性质,5-二苯基-1H-吡啶-4-酮 15b和1,3,5-三取代的吡啶-4-酮16a-b。2H-Azirine-2-羰基叠氮化物:制备和用作N-杂环砌块。QUINAP相关哌啶相关性质
3-芳基/杂芳基-2-芳基羟基芳基-3-氧化丙烷2c,d用乙基三苯基膦酰基磷酸乙酯D的Wittig反应在甲基磺酰甲基碳酸甲基甲基己酰基中提供2-取代的6-芳亚吡嗪-3(2H) - 酮(5A,B)中等产量。在乙酸钾存在下,也从2C,D与乙酸酐的反应获得化合物5A,B. 1-取代-3-二甲基氨基丙醇-2-烯-1-氨基丙醇1B,D夫妇与5-甲基异恶唑-3-重氮氯化氢,得到异恶唑肼唑烷丙烷2g,h。化合物1a,b耦合加入5-甲基吡唑-3-重氮酰氯,得到吡唑基酰肼丙烷,其容易循环到相应的吡唑[5,1-C] [1,2,4]三嗪。研究了2-芳基酰基-3-氧化丙烷2A-F朝向各种活性亚甲基试剂的反应性。Mandyphos哌啶产品用作杂环合成中的结构取代的烯胺:杂环合成中的砌块:乙二甲酰基腙对电泳试剂的反应性。
使用N-杂环砌块5,5-DI(Pyridin-3-Y1)-3,3-Bi(1,2,4-三唑)(3,3-H(2)次数),四个3-D.具有多种连接的配位聚合物[m(3,3-dbpt)](n),m = co(1),m = ni(2),m = zn(3),和[CD-2(3,3) -dbpt)Cl-2](n)(4)被构建。通过改变**金属离子,3,3-H(2)达特有三种不同的配位模式。因此,1-3是IsoStr发生器的,具有3d 4连接的拓扑,(4(2).8(4))Schlafli符号。 4具有3-D(4,6) - 具有(4(3).6(3))(2)(4(6)。6).8(3))Schlafli符号。 1和2都揭示了弱的反铁磁性行为。另外,3和4分别展示紫色和蓝色发射带。这些结果表明,3,3-H(2)达特是一种优异的多连接接头,用于构建具有有趣结构和性质的MOF。
1,6-二氨基-4-甲基-2-氧代-1-H-吡啶-3,5-二羰基腈1与苯基异氰酸苯酯和异硫氰酸酯衍生物反应,分别产生三唑吡啶衍生物4和5A-C.用三乙酯反流的回流提供亚氨基醚6,在乙醇钠中煮沸,将其环化至7。用碳二硫化碳的1和亚硝酸钠的反应产生四唑哒嗪9.化合物1可以在与α-卤代羰基化合物反应后向相应的吡啶嗪衍生物10-14结合。通过用元素硫的化合物1反应获得噻吩吡啶15。报告了15种开发宽方便的途径的适用性和合成潜力,以独特的多官能取代的异喹啉衍生物进行。因此,化合物15与不同的糖硫磷反应以分别产生异醌衍生物17-22。描述了新合成的结构的化学和光谱验证。多六丙烯的合成途径:含有苯氧吡啶型砌块的杂环梯形聚合物的表征。
亚硝基广用于有机合成中,1a–c主要用作亲电试剂和1,3-偶极子,1d–f也具有立体定向方式,1d–h和自旋阱; 1a–c,i–k具有也被用作羰基的活性当量。1c,l–m,2a然而,关于α-氨基硝酮的报道很少。2它们可以衍生自腈和羟胺,2a来自亚氨基甲酸酯或a-氯亚胺,2g来自羟胺和亚甲基胺,2g,3d来自仲胺2f和亚硝基化合物,以及其他硝酮。2b研究了互变异构体2a,3d和a-氨基硝酮的晶体结构2a,3d,但*报道了使用此类化合物Prabhakar及其同事[2a]提供了合成中的化合物,他们在单烷基化和二酰化反应中利用了α-氨基硝酮的亲核中心。从3-氧代丁酸N-吡啶-2-基酰胺和亚硝基苯以良好的产率获得稳定的α-酰胺基-α-氨基硝酮。 然后,将α-酰胺基-α-氨基硝酮用作新的通用构建基块,以通过双亲电子试剂和双亲核试剂获得各种杂环。 以二碘甲烷为试剂,形成1.2,5-恶二嗪衍生物,而与芳香族1,2-,1,3-和1,4-二胺反应生成喹喔啉,喹唑啉,嘧啶和二苯并[d,f] [1, 3]二氮杂derivatives衍生物。烷基化芳烃 - 碳腈作为杂环合成中的砌块。SYNPHOS哌啶相关产品
6-Iodo-2-异丙基-4H-3,1-苯并恶化-4-1作为杂环合成的砌块。QUINAP相关哌啶相关性质
不断增加的全球能源消耗需要开发有效的能量转换和存储设备。与原始活性碳相比,氮掺杂多孔碳作为超级电容器的电极材料具有优异的电化学性能。在此,容易合成策略,包括苯并咪唑的固态混合,作为氮气和碳的廉价单源前体和氯化锌作为高温溶剂/活化剂,然后是混合物热解(在AR下的T = 700-1000℃ )被介绍。添加ZnCl2可防止早期升华苯并咪唑并促进碳化和孔产生。在900℃和ZnCl2 /苯并咪唑的碳化温度下获得的样品为2/1(Zbidc-2-900)的重量,特异性表面积为855m(2)g(-1),高N-掺杂水平(10wt%)和宽微孔尺寸分布(类似于1nm)。由于氮官能团的电化学活性的协同优势,Zbidc-2-900作为超级电容器电极显示出332 f g(-1)的大重量电容332 f g(-1)(以1μg(-1))和可移的孔隙度。具有稳健的循环稳定性,高产量和直接合成的优异的电容性能,该碳的高产量和直接合成具有很大的大型能量存储应用的潜力。QUINAP相关哌啶相关性质
上海毕得医药科技有限公司成立于2007年,总部位于上海市杨浦区理工大学国家大学科技园,是一家以医药中间体相关产品的研发、生产、销售及合成定制为主的****。自公司成立以来,始终坚持信誉至上,质量过硬的企业信条,产品被应用于生命科学、有机化学、材料科学、分析化学与其他学科的研发及生产领域,销售范围遍及全球。目前,公司与诸多国内**医药研发单位建立了合作伙伴关系。
公司位于上海理工大学科技园的行政办公中心面积达1,700平米,在药谷设立的研发中心面积1,800平米,包括化学合成实验室和公斤级实验室,并配有现代化仓储物流中心。公司优势产品包括特色杂环化合物、含氟化合物、手性化合物、氨基酸及其衍生物、硼酸及其衍生物等,已有多项科研项目获得国家发明专利。
为确保产品质量,公司引进了先进齐全的分析测试设备,包括400MHz核磁共振仪(NMR)、电感耦合等离子体发射光谱仪(ICP)、液质联用仪(LCMS)等,并配以严格的质量管理体系。公司签有具备GMP资质的合作工厂,配备专业的研发团队,形成了从小试、中试到工业化规模的生产能力,满足客户定制合成、目录试剂采购及合成外包生产的需求。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
暂无推荐产品!