吡啶嘧啶是吡啶二嗪家族中重要和研究较多的化合物。此外,许多杂合嘧啶类药物作为抗瘤药具有诱人的化学疗特性。利培酮,SSR6907和ramastine是吡啶并[1,2-a]嘧啶-4-酮的衍生物,具有抗精神类疾病活性。 Dominguez等。 报道,一些杂合的三环系统表现出显着的抗疟活性。据指出,这类化合物的生物反应性基本上是由于其分子结构中存在吡啶并[1,2-a]嘧啶酮部分[11]。在这些研究的推动下,科学家们策略旨在开发新方法,以使用2-氯-4-4H-4-氧代吡啶并[1,2-a]嘧啶(1)作为建筑物,合成一些可能具有生物活性的杂环化合物块。一些杂环化合物合成的新方法,例如吡啶嘧啶吡啶嗪衍生物3,吡唑吡啶[1,2-A]嘧啶衍生物4,四唑[1.5-A] [1,8]萘啶衍生物9,吡唑吡啶衍生物[1,2- a]从2-氯-4H-4-氧代 - 吡啶开始的嘧啶衍生物10a,10b,UREAPhos-METAMORPhos哌啶研究进展,UREAPhos-METAMORPhos哌啶研究进展,UREAPhos-METAMORPhos哌啶研究进展,12,吡咯哒嗪[1,2-a]嘧啶衍生物14a,14b,14c,14d和16a,16b [1,2 -A]描述嘧啶(1)。新的Alpha-amido-alpha-氨基腈作为构建杂环系统的砌块。UREAPhos-METAMORPhos哌啶研究进展
由于部分氟化化合物作为药物,农药,聚合物等的广应用,将三氟甲基选择性引入有机分子变得越来越重要。除了开发高选择性三氟甲基化剂外,开发三氟甲基取代的结构单元也是一项挑战。 有机化学的任务。 3,3,3-三氟acetone酸盐或相应的水合物是用于合成三氟甲基取代的杂环的通用双亲电子结构单元。 与1,3-双亲核试剂(如脲,苯酚或苯胺)反应可得到五元环。 与1,4-双亲核试剂(氨基脲,氨基甲酰胺,邻苯二胺)形成六元杂环。3,3,3-三氟acetone酸盐与am的反应可以高收率获得4-羟基-4-三氟甲基-2-咪唑啉-5-酮。 随后用亚硫酰氯处理这些杂环得到4-氯-4-三氟甲基-2-咪唑啉-5-酮,其被证明是通用的三氟甲基取代的结构单元。 用多种杂原子和碳亲核试剂取代氯化物是可行的。 用重氮化合物扩环得到三氟甲基取代的嘧啶。P-Phos和PhanePhos和BoPhoz哌啶相关性质嘧啶乙酮作为杂环合成的砌块。
提出了一种全合成拟蝶呤和相关拟蝶烷的逆合成策略。该方案取决于合适的2,5-二官能化的3-糠酸酯的早期加工。为此,一对有用的底物21和24易于由2,3-O-异亚丙基-D-甘油醛和4-(苯硫基)乙酰乙酸甲酯合成。接下来研究这两种中间体向呋喃内酯27的转化。获得适当控制立体化学的方法是在三氟化硼催化条件下将24与3-甲酰基丙酸甲酯缩合。接下来的五个步骤完成了27的(苯硫基)甲基取代基向所需的异戊烯基侧链的转化。因为*能以中等收率实现在46中内酯羰基的烷基化-α,所以预期的大环的部分是通过较收敛的方式较早引入的。实际上,事实证明,将24与52耦合是有效的并且具有非对映选择性。在精心设计丁烯醇内酯亚基后引入异戊烯基侧链的尝试失败后,化学顺序被颠倒了。为此目的,用于两个相关侧基的氧化的双亚硒基化策略特别有效。异丁烯基片段随后在溴化物62上的化学特异性连接是通过钯(0)催化偶联至乙烯基锡烷的方法实现的,该方法具有相当大的通用性。进一步的化学操作产生了二十二碳四烯ane烷71,从而完成了假p烷环系统的总合成的中间阶段。
作为在合成各种生物重要性的杂物中的持续研究的一部分,从6-Iodo-2-异丙基-4H-3,1-苯并恶化-4-3的新化合物合成的有效和方便的方法-one 1作为砌块。苯并嗪酮1与各种试剂如二乙基acetone,叠氮化钠和磷戊磺酰胺的反应产生了化合物2-5。研究了苯并噻嗪-4-倍硫醚5朝甲酰胺和肼水合物的行为,形成了喹唑啉酮衍生物8与β-D-葡萄糖五乙酸,乙基2-甲基-5 - ((1s,2r ,3R)-1,2,3,4-四羟基丁基)呋喃-3-羧酸盐,表氯醇和苯二磺酰氯,得到喹唑啉酮衍生物9,10,12和13。喹唑啉酮衍生物10与乙酸酐的反应导致形成酰化化合物11.通过与苯甲酰phenylacetic acid 乙酯,硫氰酸钾和苯基异硫氰酸苯磺酸的反应来研究喹唑苯基酰肼衍生物衍生物14的行为([16])。喹唑啉酮衍生物分别为15,16和18。用氢氧化钠处理化合物16,然后得到盐酸,得到巯基 - 三唑衍生物17.通过元素分析,红外(IR),H-1 NMR,C-13 NMR和质谱证实了新合成的化合物的结构。预先评估一些合成化合物的抗微生物活性。2-氨基噻吩作为杂环合成中的砌块。
4-氯-2-氟-5-硝基苯甲酸是一种可在市场上买到的多反应性结构单元,可以用作杂环定向合成(HOS)的起始原料,从而导致各种稠密的含氮循环。 4-氯-2-氟-5-硝基苯甲酸通过聚合物负载的邻苯二胺制备具有5-7元环的取代的含氮杂环的能力。 将该化合物固定在Rink树脂上,接着进行进一步的氯取代,还原硝基并适当环化,得到苯并咪唑,苯并三唑,喹喔啉酮,苯并二氮杂二酮和琥珀酰亚胺。 所开发的方法适用于各种文库的合成,包括上述类型的杂环,这些杂环在当前的药物发现中具有重要意义。 烷基化芳烃 - 碳腈作为杂环合成中的砌块。奉贤区PHOX哌啶
用作杂环合成中的结构取代的烯胺:杂环合成中的砌块:乙二甲酰基腙对电泳试剂的反应性。UREAPhos-METAMORPhos哌啶研究进展
氨基酸(AAs)价格便宜,容易获得,带有手性碳片段,是不对称合成的必需元素。 它们在生物学上很重要,由氨基(eNH2)和羧酸(eCOOH)基团组成,并且在各自特定的不同位置具有侧链。 它们的双官能度和光学纯度以及其官能团位置的变化使它们成为通用的合成子,可用于构建多种重要的旋光性杂环。氨基酸(AAS)通常被认为是肽和蛋白质的重要支架。然而,在过去的几十年中,它们已被用作各种杂环体系的合成的重要合成器,特别是对于应通过不对称合成获得一个特定立体异构体的合成。虽然AAS作为杂环化合成的应用是在1995年广审查的,但许多关于其用于建造各种不同大小的杂交的报告的报告使得该主题是有价值的更新。UREAPhos-METAMORPhos哌啶研究进展
上海毕得医药科技有限公司成立于2007年,总部位于上海市杨浦区理工大学国家大学科技园,是一家以医药中间体相关产品的研发、生产、销售及合成定制为主的****。自公司成立以来,始终坚持信誉至上,质量过硬的企业信条,产品被应用于生命科学、有机化学、材料科学、分析化学与其他学科的研发及生产领域,销售范围遍及全球。目前,公司与诸多国内**医药研发单位建立了合作伙伴关系。
公司位于上海理工大学科技园的行政办公中心面积达1,700平米,在药谷设立的研发中心面积1,800平米,包括化学合成实验室和公斤级实验室,并配有现代化仓储物流中心。公司优势产品包括特色杂环化合物、含氟化合物、手性化合物、氨基酸及其衍生物、硼酸及其衍生物等,已有多项科研项目获得国家发明专利。
为确保产品质量,公司引进了先进齐全的分析测试设备,包括400MHz核磁共振仪(NMR)、电感耦合等离子体发射光谱仪(ICP)、液质联用仪(LCMS)等,并配以严格的质量管理体系。公司签有具备GMP资质的合作工厂,配备专业的研发团队,形成了从小试、中试到工业化规模的生产能力,满足客户定制合成、目录试剂采购及合成外包生产的需求。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
暂无推荐产品!