试图确定那些没有明确定义的寄生参数的值是非常困难的,通常用一个经验值确定,换句话说,在进行软开关设计时,元器件的选择以能得到佳结果为原则来进行。在线路图中,合适的地方放置寄生元件非常重要,因为电气支路只在变换器工作的一部分时间内起作用。例如,整流器的结电容只有在整流器反向偏置时会很大,而当二极管正向偏置时就消失了。表l列出了一些容易确定的寄生参数和产生这些参数的元器件,以及这些值的大致范围。某些特殊的寄生参数值可以从特定元器件的数据资料中获得,儋州L10冷光源更换灯泡。印制电路板(PCB)对寄生参数的影响无处不在,儋州L10冷光源更换灯泡,好的PCB布局规则可以尽量减少这些影响。流过尖峰电流的印制线对由任一印制线所产生的电感和电容很敏感,所以这些线必须短而粗。存在交流高电压的PCB焊点,如功率开关的漏极或集电极或者整流管的阳极,极易与临近印制线产生耦合电容,使交流噪声耦合到邻近的印制线中。通过“过孔”连接可以使交流信号印制线的上下层都流过同样的信号。其余寄生参数的影响一般可归到相邻的寄生元件中,儋州L10冷光源更换灯泡。搞清楚构成一个典型变换器的每个元器件上的寄生参数的性质,将有助于确定磁性元件参数、设计PCB、设计EMI滤波器等。这是所有开关电源设计中难的一部分。对热稳定性差导致参数改变的故障或间歇性故障。儋州L10冷光源更换灯泡
引言对于高压的静电的消除关于零线是不是大地线的说明:1.结构的区别:零线(N):从变压器中性点接地后引出主干线。地线(PE):从变压器中性点接地后引出主干线,根据标准,每间隔20-30米重复接地。2、原理的区别:零线(N):主要应用于工作回路,零线所产生的电压等于线阻乘以工作回路的电流。由于长距离的传输,零线产生的电压就不可忽视,作为保护人身安全的措施就变得不可靠。地线(PE):不用于工作回路,只作为保护线。利用大地的“0”电压,当设备外壳发生漏电,电流会迅速流入大地,即使发生PE线有开路的情况,也会从附近的接地体流入大地。于地线和零线的问题楼上有几位讲的有一些道理,但又不完全是那样子的,接地线是系统保护,零线是系统封装。这个问题好从系统设计来讲,接地线和零线都可以作为电流卸载线,它们又有所不同,接地线是系统对地卸载点,零线是系统内部卸载点。一个系统中可以使用放电电阻来卸载,也可以通过接地来卸载,以三相电为例,以前国外都是三相五线制,即三相火线、一根零线、一根地线;国内都是三相四线制,即三相火线、一根地线(现在也改为三相五线制),在企业变电站也是将变压器的次级零线接地。儋州L10冷光源更换灯泡上门维修,要求医院先付多少多少的工时差旅费,检查后,技术服务费(维修费)或配件费另计;
由于边缘处受强磁场的吸引,显示高的电流密度,这种电流密度在端部的重新分布增加了导体的交流电阻,其结果比一维分析的要大很多。通过优化铜带边缘的场分布,可以减小边缘处的磁场垂直分量,这样可以改善铜带导体电流密度的分布,减小绕组高频损耗。具体方法是在铜带边缘处使用高磁导率磁芯,减小磁路磁阻,这样就会降低了铜带端部的磁场,减小了端部的电流分布,绕组损耗将会降低,但是需要特殊的磁芯工艺。4.绕组涡流损耗对于高频变压器,因为存在原边和副边绕组,所以可以通过绕组交错布置的方式小绕组的漏感和涡流损耗。在绕组交错布置时,因为原、副边绕组的磁势是相反的,此会存在一个去磁效应,磁芯窗口中的磁势会有一定的减小,漏磁场和高频时漏磁场成的导体涡流损耗也会比较小。对于高频电感而言,它只有一个绕组,磁路中的气隙磁势和绕组的磁势平衡,在窗口中没有其它绕组的磁势可以和电感绕组的磁势相平衡产生去磁效应,因此电感磁芯窗口中的磁势较大,磁场较强。通过分析可以发现,电感中的磁通主要分为以下几个部分:①主磁路磁通。这部分磁通是流通在电感磁芯中的磁通,它不会在磁芯窗口中出现,因此它不会切割导体,也不会产生导体损耗。②气隙边缘磁通。
开关电源内部主要损耗要提高开关电源的效率,就必须分辨和粗略估算各种损耗。开关电源内部的损耗大致可分为四个方面:开关损耗、导通损耗、附加损耗和电阻损耗。这些损耗通常会在有损元器件中同时出现,下面将分别讨论。与功率开关有关的损耗功率开关是典型的开关电源内部主要的两个损耗源之一。损耗基本上可分为两部分:导通损耗和开关损耗。导通损耗是当功率器件已被开通,且驱动和开关波形已经稳定以后,功率开关处于导通状态时的损耗;开关损耗是出现在功率开关被驱动,进入一个新的工作状态,驱动和开关波形处于过渡过程时的损耗。这些阶段和它们的波形见图1。导通损耗可由开关两端电压和电流波形乘积测得。这些波形都近似线性,导通期间的功率损耗由式(1)给出。控制这个损耗的典型方法是使功率开关导通期间的电压降小。要达到这个目的,设计者必须使开关工作在饱和状态。这些条件由式(2a)和式(2b)给出,通过基极或栅极过电流驱动,确保由外部元器件而不是功率开关本身对集电极或漏极电流进行控制。电源开关转换期间的开关损耗就更复杂,既有本身的因素,也有相关元器件的影响。与损耗有关的波形只能通过电压探头接在漏源极(集射极)端的示波器观察得到。用此法时须注意在比较测量时,仪器外部的条件:控制开关、旋视、按键、电源等设置必须相同。
这非常便于使用。这些损耗列于此处,使人们可以对损耗的性质作出评价。与变压器和电感有关的损耗主要有三种:磁滞损耗、涡流损耗和电阻损耗。在设计和构造变压器和电感时可以控制这些损耗。磁滞损耗与绕组的匝数和驱动方式有关。它决定了每个工作周期在B-H曲线内扫过的面积。扫过的面积就是磁场力所作的功,磁场力使磁心内的磁畴重新排列,扫过的面积越大,磁滞损耗就越大。该损耗由式(6)给出。如公式中所见,损耗是与工作频率和大工作磁通密度的二次方成正比。虽然这个损耗不如功率开关和整流器内部的损耗大,但是处理不当也会成为一个问题。在100kHz时,Bmax应设定为材料饱和磁通密度Bsat的50%。在500kHz时,Bmax应设定为材料饱和磁通密度Bsat的25%。在1MHz时,Bmax应设定为材料饱和磁通密度Bsat的10%。这是依据铁磁材料在开关电源(3C8等)中所表现出来的特性决定的。涡流损耗比磁滞损耗小得多,但随着工作频率的提高而迅速增加,如式(7)所示。涡流是在强磁场中磁心内部大范围内感应的环流。一般设计者没有太多办法来减少这个损耗。电阻损耗是变压器或电感内部绕组的电阻产生的损耗。有两种形式的电阻损耗:直流电阻损耗和集肤效应电阻损耗。其次是医疗设备的有些厂商,为了获取更多的商业利润,想方设法、变换窍门。儋州L10冷光源更换灯泡
超声诊断仪检查中使用的清洁用纸,会使工作环境中产生较多纸屑。儋州L10冷光源更换灯泡
全桥式变压器开关电源工作原理与推挽式变压器开关电源以及半桥式变压器开关电源的工作原理是很相似的,因此,分析方法也基本相同。下面我们进一步详细分析全桥式变压器开关电源的工作原理。当控制开关K1和K4接通时候,电源电压Ui被加到变压器初级线圈N1绕组的a、b两端,在变压器初级线圈N1绕组中将有电流经过,通过电磁感应会在变压器的铁心中产生磁场,并产生磁力线;同时,在初级线圈N1绕组的两端要产生自感电动势e1,在次级线圈N2绕组的两端也会产生感应电动势e2;感应电动势e2作用于负载R的两端,从而产生负载电流。因此,在初、次级电流的共同作用下,在变压器的铁心中会产生一个由流过变压器初、次级线圈电流产生的合成磁场,这个磁场的大小可用磁力线通量(简称磁通量),即磁力线的数目Φ来表示。如果用Φ1来表示变压器初级线圈N1绕组电流产生的磁通量,用Φ2来表示变压器次级线圈电流产生的磁通量,由于变压器初、次级线圈电流产生的磁场方向总是相反,则在控制开关K1和K4接通期间,由流过变压器初、次级线圈电流在变压器铁心中产生的合成磁场的总磁通量Φ为:Φ=Φ1-Φ2K1和K4接通期间(1-179)其中变压器初级线圈电流产生的磁通Φ1还可以分成两个部分。儋州L10冷光源更换灯泡
成都镭伙科技有限公司致力于仪器仪表,是一家服务型的公司。成都镭伙科技致力于为客户提供良好的内窥镜以及维修周边,动力系统及手柄附件维修,摄像系统主机及摄像头维修,手术器械类维修,一切以用户需求为中心,深受广大客户的欢迎。公司将不断增强企业重点竞争力,努力学习行业知识,遵守行业规范,植根于仪器仪表行业的发展。成都镭伙科技秉承“客户为尊、服务为荣、创意为先、技术为实”的经营理念,全力打造公司的重点竞争力。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。