压电气体混合驱动式喷射点胶阀的设计与实验
为了实现压电喷射点胶,使压电喷射技术能***地应用到电子封装产业中,设计了一种压电/气体混合驱动式非接触喷射点胶阀.介绍了该点胶阀的工作原理,利用FLUENT动网格技术分析了阀杆行程与胶液实现喷射的关系,通过实验得到了影响点胶阀点胶质量的因素.实验选用直径为0.3 mm的钨钢喷嘴,实现了5 000 mPa·s中高粘度环氧树脂胶结剂的喷射点胶,获得胶点**小直径为0.5 mm,点胶频率可达120 Hz,胶点一致性误差在5%以内,新型点胶阀功能特点选用原则.随着微电子技术的发展,新型点胶阀功能特点选用原则,流体点胶技术在微电子封装[1-3]、微机电系统(micro-electro mechanicalsystems,MEMS)[4]以及生物医药[5]等领域的应用越来越***,新型点胶阀功能特点选用原则,特别是在微电子封装工业中,流体点胶技术对芯片封装和固定等起着关键作用.目前常用的流体点胶技术主要是接触式点胶,一种加柔性放大臂的基于超磁致伸缩棒驱动的点胶阀
3.2.2 数据格式的转换 在这里我们编写一段代码来将前面读取的x和y坐标转换camalot的mark坐标格式: Open "d:camalottest.txt" For Output As #1 str = " " & 1 & "; REFPT; " & x & "; " & y& ";" Print #1, str ***的执行结果就是在d盘的camalot目录下生成了一个test.txt的文本文件,该文本文件包含这样的内容:“1; REFPT ; 20.86; 30.86;”,这样也就将x和y坐标转换camalot的mark坐标格式。 3.3 点胶机程序的优化 我们仔细观察点胶机的工作过程,就会发现胶机的点胶速度还是很快的,它的大部分时间都花在点胶头的移动上了。我们要考虑的主要因素就成了如何尽量减少点胶头的移动距离问题,即寻求**短路径的问题。假设总共有PCB板上有n个需要点胶位置,从一个特定的起始点出发,如何才能寻找一条比较好的路径,使得其能遍历所有的点而运动的总距离**短。数学描述如下: 假设{1,2,3,…,i…,n}为一系列要遍历的点,其坐标位置分别为{(X1,Y1),(X2,Y2),…,(Xi,Yi),…,(Xn,Yn)},我们的目标是寻求一个序列{(i1,i2,…,in)}使得: 1) 每个点在序列中*出现一次; 2) 满足ikik 1(1≤k≤n)两点间距离**小。
喷射式精密点胶阀的设计及分析
流体点胶技术是以一种可控的方 式对胶液进行精确分配的过程。微电子封装中贴片、晶片打标、底部填充等重要过程都需要流体点胶技术的支持,以实现精确稳定的电子封装。为了适应微电子技术 的发展需求、提高生产效率及点胶质量,点胶技术正逐渐不可避免的由接触式点胶技术向非接触式点胶技术转变。本文对流体点胶技术进行了综述分析,并设计了一 种基于压电陶瓷驱动的喷射式点胶阀。 首先,分析影响流体喷射过中液滴形成的主要因素,分析了胶滴形成机理。根据质量守恒定律和动量守恒定律对粘性不可压缩流体的层流运动建立了控制方程,利用 VOF模型追踪喷射过程中液体表面在空气中变化并形成液滴的过程,并根据连续表面力法(CSF)描述气相与液相间的表面张力作用。分别分析了供料压力、撞 针运动、表面张力系数以及粘度等因素对流体喷射过程中液滴体积、拉伸长度、断裂时间以及喷射速度等参数的关系。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。