双作用液压缸是指能由活塞的两侧输入压力油的液压缸。它常被用作千斤顶的驱动组件。双作用液压缸的执行器是液压运动系统的主要的输出设备,虽然在大小、类型和设计结构上各有不同,通常这部分也是**能被观察到的部分。这些执行器将液体压力转换成快速的、可控的线性运动或力,从而驱动负载。中文名双作用液压缸外文名Doubleactinghydraulylinder学科机械工程领域工程技术范围液压缸释义由活塞的两侧输入压力油的液压缸目录1双作用液压缸与单作用液压缸区别2结构原理3爪式千斤顶双作用液压缸双作用液压缸与单作用液压缸区别编辑单作用液压缸是指其中一个方向的运动用油压实现,返回时靠自重或弹簧等外力,这种油缸的两个腔只有一端有油,另一端则与空气接触。双作用液压缸就是两个腔都有油,两个方向的动作都要靠油压来实现[1]。双作用液压缸结构原理编辑典型的执行器包括液压缸体、节流阀盖、活塞、活塞杆、密封件,以及活塞和活塞杆的轴承面。通常,广东液压缸询价,对于工业的各个环节,它能耐受20,000kPa(持续压力)以内的压力;对于搅拌和压力的应用,可达到55,000kPa。其行程长度能达到3米,液压缸体直径可达到20cm,广东液压缸询价,广东液压缸询价,还有更大的尺寸,可用于其他特殊应用。根据基本的液压关系。
通路68在各端具有围绕纵轴线66对称布置的开口70和72。转子44的开口70和72布置成用于与端板62和64以及入口孔74和78和出口孔76和80液压连通,使得在旋转期间,开口70和72交替地将高压流体和低压流体液压地暴露至相应的歧管50和52。歧管50和52的入口端口54、60和出口端口56、58在一个端元件46或48中形成至少一对高压流体端口,并在相对的端元件46或48中形成至少一对低压流体端口。端板62和64、入口孔74和78以及出口孔76和80设计有呈圆弧或圆形部段形式的垂向流动截面。关于ipx28,工厂操作者具有对***流体18与第二流体20之间的混合程度的控制,该控制可用于改善流体处理系统(例如,压裂设备或压裂系统10)的可操作性。例如,对进入ipx28的***流体18和第二流体20的比例加以改变就可允许工厂操作者控制混合在流体处理系统中的流体量。可能影响混合的ipx28三个特征是:(1)转子通路68的纵横比、(2)***流体18与第二流体20之间暴露的短持续时间、以及(3)转子通路68中***流体与第二流体之间的流体屏障(例如,交界面)的产生。***,转子通路68是大致长且窄的,这稳定了ipx28内的流动。此外,***流体18和第二流体20能以塞状流态(plugflow)运动通过通道68而几乎没有轴向混合。第二。
压力212)等于或大于压力214。还应指出的是,随着流体的流速增加,下游(例如,各流体汇合处)的压力将随着每份给定时间流体流过更大的体积而趋于增加。在特定实施例中,润滑流体入口处的压力212与***流体18的高压入口处的压力214之间的阻力可忽略不计,并且在该情形中,润滑流体的压力或流速的增加可大致使***流体18移位。因此,控制器200可控制或调节ipx28的对应部件和润滑流体系统98的部件(例如,一个或多个阀、高压泵12、低压泵14、泵192等),以至少部分地基于部分在局部回路图220和222中所论述的构思来增加或减少其压力、流速、流量或其组合。例如,在润滑流体被引导进入ipx28的内部区域的情形中,控制器200可控制泵192和/或对应的阀,以将润滑流体212的压力调节为高于或低于压力214。例如,在润滑流体被引导进入ipx28的内部区域、***流体18的高压入口和/或第二流体20的低压入口中的任何一个或其组合的情况下,控制器200可控制泵192和/或对应的阀以增加润滑流体的压力,使得润滑流体的压力等于或大于高压入口处的***流体18的压力。在一些实施例中,控制算法可存储在存储器204中,并且可由控制器200的处理器206执行。控制算法在执行时可将各个流体(例如。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。