硬质合金MIM技术的研究进展 早在1977年Curry就获得了用石蜡做粘结剂的硬质合金注射成形技术**,后来转让给Leco公司,成为Leco工艺。但由于单组元石蜡作粘结剂会导致脱脂时间长,易于产生缺点等问题,使得该**影响范围不大.但进入80年代后,嘉定区粉末冶金零部件质量放心可靠,随着MIM技术在粘结剂配方,嘉定区粉末冶金零部件质量放心可靠,嘉定区粉末冶金零部件质量放心可靠,脱脂技术等方面的突破性进展,这就对硬质合金注射成形技术的日趋成熟提供了强大的技术支持,再加上硬质合金注射成形技术本身得天独厚的优势,从80年代初就在世界范围内涌现出一批从事硬质合金注射成形生产与研究的厂家和研究机构。
如今,使用粉末材料的注塑成形技术主要用于制造工业用复杂组件。粉末注塑成形是除了其它成型工艺(精密铸造和轴向或均衡压制)外的另一种可供选择的工艺。近年来,用陶瓷或金属粉末来制造注形成型零件的应用领域主要包括汽车工业、工业、磁体生产、纺织工业、钟表工业、家居用品、精密工程、医疗和牙科技术以及陶瓷工业。粉末注塑成形技术使组件的批量生产成为可能,因为采用机械加工或压制技术进行批量生产已经不再是一种经济有效的方式。注塑成形技术使组件的设计和制造过程具有几乎无限的自由度。粉末注塑成形制造过程包括成型零件的初始注塑成型、脱脂和烧结。组件公差由以下重要因素确定:1.粘合剂含量2.粉末特性3.混合过程4.注塑成型参数5.重力变形6.在烧结托盘上的滑动性能可用材料范围原则上,所有细颗粒、可烧结的粉末都可以和相应的粘合剂混合并在注塑机上加工。包括氧化陶瓷、金属、碳化物及氮化物。由于混合和注塑设备在处理粉末材料的过程中会受到较强磨损,因此建议选择粒度尽可能小的粉末。较细的粉末可降低表面粗糙度,从而在加工过程中降低磨损并提高生坯强度。
辛民等在切削铁基和镍基粉末冶金材料时发现,相比硬质合金,陶瓷拥有更长的使用寿命。此外,由于陶瓷的化学稳定性较好且与工件的摩擦系数较小,因此其加工后零件的表面粗糙度优于硬质合金。郭丽波等选用YT15硬质合金、YW2硬质合金、YL100陶瓷和PCBN四种切削粉末冶金烧结钢,以VB=,结果显示,在高速切削时,PCBN、YL100陶瓷和硬质合金的使用寿命依次降低,其中PCBN的使用寿命约为硬质合金使用寿命的2-3倍;与高速切削相反,在低速切削过程中硬质合金的使用寿命**长,PCBN的寿命**短;在表面加工质量方面,PCBN和YL100陶瓷切削后的表面粗糙度明显优于硬质合金。2、可加工性的改善与生坯加工对于粉末冶金烧结材料可加工性的改善措施主要有表面浸渗和添加易切削剂,这两种方法都能降低磨损。生坯加工是在烧结前对材料进行机械加工,可以从根本上消除粉末冶金材料加工的磨损,是一种新颖的粉末冶金制造工艺。(1)表面浸渗与易切削剂的添加为了改善粉末冶金材料的多孔性导致切削力的波动,可用金属(通常是铜)或者聚合物对其表面进行浸渗,使其表面孔隙在加工前被封闭,降低切削力的波动,提高寿命和已加工表面质量。与对材料进行浸渗相比。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。