SpeedDP用于模型训练和评估测试的数据集是由一系列的图像和标注文件组成的,平台支持多种开源数据格式如VOC和COCO。而目前平台共支持yolox系列和yolov8系列模型用于模型训练(分割任务支持yolov8模型),通过不断额测试验证,就能够让AI实现海思、RockChip嵌入式硬件平台等模型部署的可视化AI开发功能。经过验证,训练成熟后的AI进行标注时,通常情况下,7-8ms就能标注一张图像,这是人工标注远不能及的速度。目前,我司能够为该平台提供完整的人、车、船等目标检测模型的数据提供,也可以根据应用场景进行特殊定制。成都慧视开发的Viztra-HE032图像处理板拥有6.0TOPS的算力。成都目标图像识别模块板
随着无人机在城市管理领域的大规模应用,采用无人机追踪地面车辆,然后配合地面拦截,成为一道风景线。让无人机搭载光电吊舱起飞,就能够通过无人机实现视频实时传输,远距离追踪车辆,实时上传记录位置,帮助地面执勤提升拦截效率。慧视VIZ-YWT201微型双光吊舱,集成了可见光摄像机、红外热像仪等传感器,能够对地面车辆进行昼夜观察、识别、捕获和跟踪,并及时上报目标的图像和坐标信息。除此之外,无人机还可以实现智能化追踪。成都小体积图像识别模块成都慧视可以定制高帧频目标跟踪的图像处理板。
我国西部地区地形复杂、天气多变,许多电网架设在高山流水之间,给电网的巡检维护造成了不小的困难。于是,不同于传统人工巡检的智能化巡检维护开始逐步应用。这种方式采用无人机加智能化机器人,其中无人机承担巡检工作,而智能化机器人进行维护,两者互相配合。无人机搭载智能化吊舱,吊舱内置图像识别传感器,工程师可以通过远程识别、抵近观察等方式,找出问题所在。无人机机动性灵活性十足,能够便捷去到许多人工难以到达的区域,巡检无死角。无人机巡检一次能够抵得上三个人工同时作业,效率成倍提升。
无人机夜间工作时需要依靠红外机芯进行高清成像,而想要具备AI检测识别的能力则可以通过植入图像处理板。成都慧视可以根据需求提供整套的建设方案,实现快速集成开发。慧视Viztra-LE026图像处理板+MiNO 17红外机芯的组合方案,两款产品均使用小巧设计,整体组合重量在30g左右,并且都采用小功耗设计,用在无人机领域不会过多增加负担。在算法的赋能下,能够实现稳定的目标检测识别。Viztra-LE026图像处理板重量在10g左右,采用了瑞芯微全国产化芯片RV1126,能够输出2.0TOPS的算力,功耗不高于4W。能够以30Hz帧率跟踪像素2*2的目标,能够识别像素为12*12的目标,且识别率高于85%。而MiNO 17红外机芯重量在20g左右(净重5g(不含镜头)),像素分辨率为640*512,采用9/13/25mm三种定焦设计,支持18中伪彩选择,功耗小于0.75W。成都慧视利用RK3588芯片打造了一个高性能的Viztra-HE030图像处理板。
无人机搭载如光电吊舱等带有摄像头的设备后,达到了实现智能识别的硬件条件,但是传统的摄像头只能获取图像,并不具备AI识别的功能。无人机AI识别算法主要还是在于模仿人眼一样进行视觉处理,然后AI进行智能提取和分析图像,再和训练模型进行快速比对,从而在无人机快速飞行的过程中做到实时目标识别。首先,要想实现目标识别需要的硬件支持就是AI图像处理板。图像处理板通过算法的赋能,就能够对目标区域的物体进行AI识别分析,从而做出判断。由于无人机作业的环境复杂,因此对于图像处理板的要求需要进一步提升。成都慧视开发的Viztra-HE030图像处理板,采用了工业级芯片RK3588,采用先进架构,8核(4大4小)处理,算力能够达到6.0TOPS。同时,慧视光电能够根据需求环境定制丰富的输出接口。如何选择合适的图像处理板性能?成都视频图像识别模块技术
成都慧视可以定制CVBS接口的RK3588图像处理板。成都目标图像识别模块板
智慧城市的建设中,需要用到智慧摄像头,这些摄像头与传统的不一样,它们能够模拟人眼进行视觉处理。主要是在摄像头中植入高性能的AI图像处理板,这些板卡在定制算法的赋能下,通过对视野内的图像特征的提取分析,就能够对物体具备动态跟踪处理已经后续的识别分析能力。复杂的识别场景中,板卡的性能和AI算法的能力十分关键。旗舰级的图像处理板都是具有工业级的处理能力,在这样的环境下才能更好地工作,能够更快处理海量数据,而算法的能力则决定着处理这些信息的精度。成都目标图像识别模块板
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。