超声波焊接应力消除设备提高焊接接头疲劳性能的基本原理:金属结构件在焊接时,普遍采用熔化焊接的方法,在金属的填充过程中,在接头部位留有余高、凹坑及各种焊接缺陷,造成严重的应力集中;同时还产生一定的焊接残余应力。在绝大多数情况下,残余拉应力对焊接结构的疲劳强度是不利的。同时,大量研究表明,在焊趾部位距离表面0.5mm左右处一般存有熔渣等缺陷,该缺陷较尖锐,相当于疲劳裂纹提前萌生。在应力集中、焊趾熔渣缺陷及焊接残余拉应力的联合作用下,焊接接头的疲劳强度和疲劳寿命被严重降低。超声波焊接应力消除设备处理法提高焊接接头疲劳强度和疲劳寿命的基本原理:焊后利用超声波推动冲击工具以每秒二万次以上的频率沿焊缝方向冲击焊缝的焊趾部位,使之产生较大的压缩塑性变形,使焊趾处产生圆滑的几何过渡,从而较大降低了焊趾处余高和凹坑造成的应力集中;消除了焊趾处表层的微小裂纹和熔渣缺陷,抑制了裂纹的提前萌生;调整了焊接残余应力场,消除其焊接拉应力,在焊趾附近产生一定数值的残余压应力;并使焊趾部位材料得以强化。残余应力可能会影响材料的可靠性和寿命。上海无损应力检测设备
频谱谐波时效针对大中型构件的残余应力均化具有很好的效果,但在航空航天构件生产中,薄壁件占了很大部分。如何去除薄壁件的残余应力呢?随着振动时效技术的叠加和更新,北京翔博科技单独研发了模态宽频时效**技术,获得自主知识产权。模态宽频时效技术作为振动时效的一种,采用高频率、低动应力振动加速零件的时效进程,使零件内部残余应力降低并达到稳定状态,对于减少应力集中降低开裂失效风险、提高零件的加工尺寸精度和尺寸稳定性具有积极作用,能够有效解决产品交付后延迟变形、疲劳裂纹等问题,提高产品交付后稳定性、可靠性。上海金属应力检测方法残余应力测量技术需要遵从科学准则和规范。
机床释放应力一般采用静置的方法,一些机床厂家为了充分释放应力,会将铸件沉入海底或埋入地底,这种方法称之为自然时效。那么机床应力要释放多久呢?在网上搜索资料的时候,五花八门的答案看得人眼花缭乱,小到几个月,大到七八年,各种答案是应有尽有。在查阅了一些专业论文后,答案是应力释放根据金属构件的不同,再考虑到体积、形状等因素,大致需要几个月到几年不等。自然时效由于时间成本高、占地广等劣势,目前被厂家采用得越来越少。随着技术的进步,现在应力的释放的方法越来越多,时间也越来越短。
一般在外力消除后仍保留在金属内部的应力称为残余应力或内应力。残余应力是由于金属的不均匀变形和不均匀的体积变化造成的。残余应力按内应力作用范围,可分为宏观内应力(一类残余应力)、晶界内应力(第二类残余应力)和晶格畸变内应力(第三类残余应力)。一般宏观内应力:当金属发送不均匀变形,而物体的完整性又限制这种不均匀变形的自由发展时,在金属物体内大部分体积之间产生互相平衡起来的应力,这种因变形不均匀所出现的应力称为宏观内应力。晶间内应力:由于金属各晶粒的空间取向不同,在发送变形时,相邻的两个晶粒发生了不均匀变形,两者之间相互制约而产生平衡,阻碍变形的自由发展,变形结束后残留在晶体内形成晶间内应力。残余应力的研究需要考虑材料的应用环境和使用寿命等因素。
一般来说,高精密的机床会采用大理石等不易产生应力的材料做床身。而采用金属材料的机床现在也会采用喷丸、振动、滚压等方法去除应力。其中喷丸是使用丸粒轰击工件表面并植入残余压应力;振动是采用振动器与工件形成共振来消除应力;滚压则是通过一些滚压工具向工件表面施加压力来达到消除应力的目的。除此之外,通过热时效、炸裂法、热冲击时效法、声波时效法等方法也可以消除应力。相对以上提到的几种时效方法,振动时效更加适用于机床应力释放。振动时效是利用机械共振的方法消除或均化金属结构在铸造、锻压、焊接和切削等机械加工后所产生的残余应力。它通过向工件施加一定大小和频率激振力的方式给工件传递能量,使工件发生微小或宏观塑性应变来匀化和消除残余应力。残余应力的研究需要结合材料力学、热学等学科。上海金属应力检测机构
残余应力会影响材料的成形和性能。上海无损应力检测设备
如何利用降低结构局部刚度来控制焊接残余应力?结构的刚度增加时,焊后的残余应力将明显加大。因此,在条件许可时,焊前采取一定的工艺措施,将焊接区域的局部刚度降低,将有效地减少焊接残余应力。如一镶块结构的焊件,由于焊缝呈封闭形刚度较大。为减少焊接区域的局部刚度,可以将平板少量翻边,或将镶块压凹,焊接时由于焊缝能自由收缩(将平板或镶块拉平),使残余应力大为减少。如何利用振动法来消除焊接残余应力?1、频谱谐波时效法:利用偏心轮和变速电动机组成的激振器使焊接结构发生共振产生循环应力,可使焊接残余应力逐渐降低,这种方法称为振动法。振动法消除残余应力的效果取决于激振器和构件支点的位置、激振频率和时间。其优点是所用设备简单、处理费用低、时间短,也没有高温回火时金属表面氧化的问题,目前在生产中已得到普遍应用。上海无损应力检测设备
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。