形成水包油型微乳液,微乳液类型为WinsorⅠ型;R>1时,形成油包水型微乳液,微乳液类型为WinsorⅡ型;R≈1时,形成双连续型微乳液,微乳液类型为WinsorⅢ型。该理论的**是定义了一个内聚作用能比值,并将其变化与微乳液的结构和性质相关联。由于R比中的各项属性都取决于体系中各组分的化学性质、相对浓度以及温度等,因此R比将随体系的组成、浓度、温度等变化。微乳液体系结构的变化可以体现在R比的变化上,因此R比理论能成功地解释微乳液的结构和相行为,从而成为微乳液研究中的一个非常有用的工具。微乳液制备微乳液制备原理W/O型微乳液是由油连续相、水核及表面活性剂与助表面活性剂组成的界面三相构成,水核被表面活性剂与助表面活性剂组成的单分子层界面所包围,形成单一均匀的纳米级空间,所因此可以将其看作一个微型反应器。微乳液是热力学稳定体系,在一定条件下具有保持稳定尺寸自组装和自复制的能力,因此微乳液提供了制备均匀尺寸纳米微粒的理想微环境。用W/O微乳液制备纳米级微粒**直接的方法是将含有反应物A、B的两个组分完全相同的微乳液溶液相混合,两种微乳液的液滴通过碰撞融合,在含不同反应物的微乳液滴之间进行物质交换,产生晶核,然后逐渐长大。玻璃磨削金属加工油厂家推荐成都迈斯拓新能源润滑材料股份有限公司。重庆铜拉丝金属加工油厂家现货
***与***的间距(孔距)为8mm的***阵列,得到所需要的无纺布滤网。(2)疏水涂料的配制:分别称取(粒径范围20-50nm)和(粒径范围150-200nm)加入含有95ml无水乙醇的圆底烧瓶,室温磁力搅拌2h后,加入1ml的1h,1h,2h,2h-全氟十二烷基三氯硅烷,锡纸包裹圆底烧瓶避光,继续室温磁力搅拌24h。(3)涂覆工艺处理无纺布滤网涂覆1ml的疏水涂料,待热风干燥5min后中,剩余疏水涂料混匀,再进行第二次涂覆,反复进行5次涂覆处理,经过热风干燥后便得到以无纺布滤网为基底材料的油水分离膜。实施例三:(1)滤网处理将10cm×10cm的铜片采用离子水超声清洗5min,用氮气吹干后,再用无水乙醇清洗5min,氮气吹干,待用。利用机械臂和针板可以在铜片表面扎出针径为***,孔深为5mm,***与***的间距(孔距)为10mm的***阵列,得到铜网。(2)疏水涂料的配制:分别称取1g二氧化钛纳米颗粒(粒径范围50-100nm)和(粒径范围200-300nm)加入盛有99ml无水乙醇的圆底烧瓶,室温磁力搅拌2h后,加入1ml1h,1h,2h,2h-全氟辛基三乙氧基硅烷,锡纸包裹圆底烧瓶避光,继续室温磁力搅拌24h。(3)涂覆工艺处理铜网表面涂覆1ml的疏水涂料,待热风干燥5min后中,剩余疏水涂料混匀后,再进行第二次涂覆,反复进行5次涂覆处理。重庆铜拉丝金属加工油厂家现货贵州玻璃磨削金属加工油厂家推荐成都迈斯拓新能源润滑材料股份有限公司。
本发明利用低表面能的氟化物和提高表面粗糙度的纳米颗粒混合疏水涂料来提高膜表面的疏水性,使其表面实现超疏水,滤网的孔能够很好地提**离膜材料承受水油混合物带来的高压力,并且能够提高油水分离的效率,使得膜的承受压力和分离效率能够有效提高,本发明利用滤网的孔再结合表面粗糙度和表面低表面能物质的方法能够很好地提高不同滤网材料制备成的油水分离膜的承受压力和油水分离效率。附图说明图1为实施例1的油水分离膜表面经过10次循环油水分离的分离效率和分离时间变化图;图2为实施例1的油水分离膜表面经过10次循环油水分离的接触角变化图;图3为实施例1的油水分离膜表面的fesem图;图4为图3的局部放大fesem图。具体实施方式以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。实施例一:(1)滤网处理根据实际油水分离情况选择基底材料种类,在滤纸表面扎出针径为***,孔深为5mm,***与***的间距(孔距)为10mm的***阵列,得到所需要滤纸网。(2)疏水涂料的配制:分别称取(粒径范围20-50nm)和(粒径范围160-200nm)加入含有99ml无水乙醇的圆底烧瓶,室温磁力搅拌2h后,加入1ml的1h,1h,2h,2h-全氟辛基三氯硅烷。
所述表面活性剂为聚氧乙烯辛基苯酚醚、异辛醇聚氧乙烯醚中的一种或两种按任意比例混合的混合物;所述缓蚀剂为苯并三氮唑、磷酸酯中的一种或两种按任意比例混合的混合物;所述沉降剂为聚丙烯酰胺、四甲基乙二胺中的一种或两种按任意比例混合的混合物;所述润滑剂为聚乙二醇、丙三醇、水性聚醚中的一种或两种以上按任意比例混合的混合物;所述杀菌剂为三嗪类杀菌剂;所述消泡剂为聚醚型消泡剂、二甲基硅油消泡剂中的一种或两种按任意比例混合的混合物。本发明的有益效果在于:本发明制得的一种全合成切削液,引入水性极压剂,结合水性润滑剂,解决了传统全合成切削液润滑极压性差的弱点;本发明制得的一种全合成切削液还引入了羧酸盐和硼酸*防锈剂,解决了传统全合成切削液防锈性差的缺点;同时保持了全合成切削液***的清洗性能和散热性能,同时具有良好的使用寿命;上述全合成切削液合成工艺简单,适用范围广,不含亚硝酸盐和其他重金属,不会造成环境污染,也不会腐蚀金属基体;从实施例中的技术参数看出,本发明涉及的全合成切削液具有良好的润滑、防锈、冷却和清洗能力,具有使用寿命久的***。具体实施方式为详细说明本发明的技术内容、所实现目的及效果。防锈金属加工油厂家推荐成都迈斯拓新能源润滑材料股份有限公司。
使其易于弯曲形成微乳液混合膜作为第三相介于油和水相之间,膜的两侧面分别与油、水接触形成两个界面,各有其界面张力和表面压,总的界面张力或表面压为二者之和。当混合膜两侧表面压不相等时,膜将受到剪切力而弯曲,向膜压高的一侧形成W/O或O/W型的微乳液。微乳液双重膜理论1955年Schulman和Bowcott提出吸附单层是第三相或中间相的概念,并由此发展到双重膜理论作为第三相。混合膜具有两个面,分别与水和油相接触,正是这两个面分别与水、油的相互作用的相对强度决定了界面的弯曲及其方向,因而决定了微乳体系的类型。表面活性剂和助剂的极性基头和非极性基头的性质,对微乳类型的形成至关重要。微乳液几何排列理论Schulman等人早期提出的双重膜理论,从膜两侧存在两个界面张力来解释膜的优先弯曲。后来Robbins、Mitchell和Ninham等又从双亲物聚集体中分子的几何排列考虑,提出界面膜中排列的几何模型。在双重膜理论的基础上,几何排列模型或几何填充模型认为界面膜在性质上是一个双重膜,即极性的亲水基头和非极性的烷基链,分别与水和油构成分开的均匀界面。在水侧界面极性头水化形成水化层,在油侧界面油分子是穿透到烷基链中的。成都钻削金属加工油厂家推荐成都迈斯拓新能源润滑材料股份有限公司。四川金属加工油生产厂家
成都支架乳化金属加工油厂家推荐成都迈斯拓新能源润滑材料股份有限公司。重庆铜拉丝金属加工油厂家现货
封存防锈油介绍:封存防锈油以低粘度深度精制润滑油为基础原料,加入多种功能添加剂调制而成的,可根据客户的要求定制不同粘度和不同防锈期的产品。适用范围:适用于以钢铁为主的金属材料及其制品的暂时防腐保护。置换防锈油介绍:置换防锈油以低粘度深度精制润滑油为基础原料,加入多种功能添加剂调制而成的,有很好的水膜和人汗置换效果,可根据客户的要求定制不同粘度和不同防锈期的产品。适用范围:适用于以钢铁为主的金属材料及其制品的暂时防腐保护。重庆铜拉丝金属加工油厂家现货
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。