敞开式断路器监测功能特性◆具备声纹振动、电流波形、行程曲线、压力变化等记录及展示,自动计算峰值电流、电流上升速率、动作时间、动作时长、行程、动/静触头分/合闸位置和次数等参数。◆IED/主机支持多通道监测数据的实时同步采集,通道数不小于8个(可定制)。◆具有比对分析功能:可将现测与标准/历史的监测数据进行横向/纵向比对分析。◆具有断电不丢失存储数据、复电自启动、自复位的功能,可连续实时监测、存储及导出1000次以上断路器动作数据。◆断路器每次动作后,IED/主机主动评估断路器运行状态,并自动上传分析结果。◆智能分析:依托于我公司建立的海量典型故障案例的数据库,包络分析后可快速实现历史信号重合度比对开展智能分析,更直观、快速地判断电力设备运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算,当实时采集信号包络曲线与正常状态包络曲线的互相关系数:接近1时,被测设备是接近正常状态。接近0时,被测设备是可能存在故障的异常状态。GZAF-1000T系列变压器(电抗器)振动声学指纹监测系统功能。杭州GZAF-1000T系列振动声学指纹在线监测技术方案
3.3GZAFV-01系统的监测数据信号分析与处理3.3.1OLTC运行状态分析OLTC动作时,典型声纹振动和驱动电机电流的信号如下图3.4所示。通过分解时域内典型信号区间,可有效判断OLTC驱动电机启动、分接选择器断开、分接选择器闭合、切换开关动作、驱动电机制动等动作顺序,进而分析OLTC的运行状态。然而,以上通过典型信号分析判断OLTC的运行状态需要丰富的实践经验,为方便监测人员快速完成诊断任务,需通过多种算法更直观、准确地判断OLTC状态。GZAFV-01系统结合基于小波变换及希尔伯特变换的包络分析、基于互相关系数的重合度分析、基于小波多分辨率分解的能量分布曲线分析、基于时频分布矩阵的信号比对等多种核心算法,实现OLTC***、有效、准确的状态诊断和早期隐患监测,降低OLTC运行的故障风险。杭州开关柜振动声学指纹在线监测业绩GZAF-1000S系列高压开关振动声学指纹监测系统--GIS本体监测技术背景。
变压器在生产、运输、安装过程中或在短路电流作用下,均会使绕组及铁芯压紧程度降低,绕组及铁芯故障分别约占变压器整体故障的36%和4%,对变压器抗短路电流冲击能力及安全稳定运行产生巨大威胁。绕组故障主要包括绝缘老化、受潮、匝间或绕组间短路、断路及机械损伤等,以上故障类型均可能导致绕组变形。传统的绕组变形监测方法有低压脉冲法(LVI)、频率响应分析法(FRA)和短路阻抗法(SCI),以上方法*适用于离线或停电监测。铁芯典型故障包括压铁松动、接地不良、夹件松动或损伤,常用监测方法包括绝缘电阻测试及接地电流监测。
从振动和声学数据中提取有用的特征,以便建立设备的声学指纹,通常会用到以下信号处理技术:傅里叶变换(FFT):用于分析信号在频域中的特性,可以识别出设备运行时的固有频率和谐波成分。短时傅里叶变换(STFT):与FFT相比,STFT能够展示信号随时间变化的频率特性,适用于非平稳信号的分析。小波变换:具有良好的时频局部化特性,能够在多尺度上分析信号,适合捕捉瞬态事件和局部特征。包络检测:用于提取振动信号的振幅包络,可以用来表示信号的动态特性。频谱分析:通过计算信号的功率谱密度(PSD)或幅值谱,可以识别出信号的频率成分和能量分布。时频分析方法:如Wigner-Ville分布、Choi-Williams分布等,这些方法能够提供信号的时频表示,有助于分析复杂非线性和非平稳信号。模态分析:通过识别设备振动的模态特性,可以提取出与设备结构和损伤相关的特征。熵分析:如时域熵、频域熵或小波熵,这些方法可以量化信号的不确定性和复杂性,有助于识别设备状态的变化。统计分析:包括均值、方差、标准差等统计参数,可以描述信号的波动性和稳定性。高阶统计量:如偏度和峰度,它们可以提供信号分布形状的信息,有助于识别异常模式。杭州国洲电力科技有限公司振动声学指纹在线监测使用说明。
4.1.6通过绕组及铁芯声纹振动信号频谱分析可自动识别峰值频率偏移及谐波增量,实时分析绕组及铁芯运行状态。4.1.7具有自动绘制声纹振动和电流信号的历史数据曲线趋势功能。4.1.8阈值超限告警功能:实时分析信号发展趋势,实现阈值超限自动告警,支持短信发送告警信息。4.1.9智能分析功能:软件内置典型故障特征的数据库,可与监测数据进行比对,通过信号波形、时间长度和幅值等特征值,诊断分析故障类型;也可添加新监测数据,方便后期横向、纵向比较;可将同一厂家同一型号的正常监测数据导入保存,便于对该厂家、型号的变压器监测数据曲线进行比对分析。4.1.10具有报表分析功能,自动计算并保存重合度、动作时间、能量分布、电流最大值、电流平均值、绕组及铁芯振动峰值频率、总谐波畸变率、基频能量比、互相关系数等特征参量,并生成分析报表。GZAF-1000S系列高压开关振动声学指纹监测系统--GIS及敞开式的隔离开关监测技术背景。杭州振动声学指纹在线监测软件界面
GZAF-1000T系列变压器(电抗器)振动声学指纹监测绕组及铁芯运行状态分析。杭州GZAF-1000T系列振动声学指纹在线监测技术方案
3.3.1.3能量分布曲线基于小波变换的声纹振动信号多分辨率分析结果如下图3.8所示。原始信号经8层分解后产生第8层的近似分量和第1层至第8层的详细分量,计算各层详细分量信号能量,可获得信号能量分布曲线。比对正常状态与异常状态能量分布曲线,可判断OLTC运行状态,并提取互相关系数、最大值、平均值、峰度、偏度作为状态诊断特征参量。下图3.7为正常与异常状态的声纹振动信号能量分布曲线比对。
3.3.1.4时频能量分布矩阵(ATF图谱)获取声纹振动信号的时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于OLTC正常状态与异常状态比对。下图3.9为正常状态下声纹振动信号时频能量矩阵。 杭州GZAF-1000T系列振动声学指纹在线监测技术方案
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。