TPU的开发和商业化可以追溯到上世纪50年代。1950年,BFGoodrich公司的Schollenberger等人开始研制TPU,经多次改良,Goodrich公司(现为Lubrizol公司)于1961年正式推出以EstaneVc为主的商品化TPU产品。上世纪90年代,随着外资TPU生产企业在中国投资建厂,我国TPU工业开始起步并逐步发展。进入21世纪,在市场需求增长(主要是PVC和橡胶的替代)、自主TPU生产工艺提升、国产上游原材料供应逐步稳定以及下游加工工艺改善等多重因素的积极推动下,中国TPU的产销年复合增长率达到10%以上。随着用量增长,TPU已成为材料行业重要组成部分,其主要应用于鞋材、3C护套、管材以及薄膜等领域。新兴领域对TPU的需求仍在不断增长,预计未来市场将保持良好发展势头。浙江耐水解TPU材料
关于聚醚型TPU与聚酯型TPU主要是由聚醚多元醇与聚酯多元醇来区分的。聚醚多元醇是在分子主链接构上含有醚键、端基带有羟基的醇类聚合物或齐聚物。因其结构中的醚键内聚能较低,并易于旋转,故由它制备的聚氨酯材料低温柔顺性能好,耐水解性能优良,虽然机械性能不如聚酯多元醇基聚氨酯,但手感性好。体系粘度低,易与异氰酸酯、助剂等组分互溶,加工性能优良。聚酯多元醇主要是由二元羧酸和二元以上醇类化合物进行缩聚反应生成的产物,其结特征是在分子主链上含有酯基、在端基上具有羟基的大分子醇类,分子量一般为500~3000。由聚酯多元醇为基础的聚氨酯材料,通常都具有力学机械性能好,耐油、抗磨性能优越等特点,但它们的耐水解性能较差,低温柔顺性差,其制品的手感,尤其是低温时的手感不如聚醚多元醇基聚氨酯柔软。聚酯多元醇的内聚能大,室温下多为蜡状固体,加热熔融后的粘度较大,它们与聚氨酯合成中所用的其它原料组分的互溶性远不如聚醚多元醇好。安徽耐化学品TPUTPU行业竞争激烈,特别是中低端市场。
扩链剂对聚氨酯性能也有影响。含芳环的二元醇与脂肪族二元醇扩链的聚氨酯相比有较好的强度。二元胺扩链剂能形成脲键,脲键的极性比氨酯键强,因而有二元胺扩链的聚氨酯比二元醇扩链的聚氨酯具有较高的机械强度、模量、粘附性、耐热性,并且还有较好的低温性能。浇注型聚氨酯弹性体多采用芳香族二胺MOCA作扩链剂,除固化工艺因素外,就是因为弹性体具有良好的综合性能。聚氨酯的软段在高温下短时间不会很快被氧化和发生降解,但硬段的耐热性影响聚氨酯的耐温性能,硬段中可能出现由异氰酸酯反应形成的几种键基团,其热稳定性顺序如下:异氰脲酸酯>脲>氨基甲酸酯>缩二脲>脲基甲酸酯其中**稳定的异氰酸酯在270℃左右才开始分解。氨酯键的热稳定性随着邻近氧原子碳原子上取代基的增加及异氰酸酯反应性的增加或立**阻的增加而降低。并且氨酯键两侧的芳香族或脂肪族基团对氨酯键的热分解性也有影响,稳定性顺序如下:R-NHCOOR>Ar-NHCOOR>R-NHCOOAr>Ar-NHCOOAr提高聚氨酯中硬段的含量通常使硬度增加,弹性降低。
用于电缆外被及绝缘层方面弹性体种类热塑性弹性体的种类很多,用于电缆外被及绝缘层方面的主要有聚烯烃类热塑性弹性体(TPO)、苯乙烯类热塑性弹性体(SBC)、热塑性聚氨酯弹性体(TPU)、聚酯类热塑性弹性体(TPUE)等。其中,由于TPO和SBC类极优良的绝缘阻抗性能,所以用于电缆外被及绝缘层的较多;而TPU,TPUE一般用于电缆外被。无卤阻燃弹性体是以树脂和橡胶为基体,并添加无卤阻燃剂的复合材料含有大量的有机化合物,具有一定的可燃性,同时添加阻燃剂可以制止其燃烧。阻燃剂是通过若干机理发挥其阻燃作用的,如吸热作用、覆盖作用、抑制链反应、不燃气体的窒息作用等。多数阻燃剂是通过若干机理共同作用达到阻燃目的。TPU目前在更深入的探索智能穿戴、医疗设备等高科技领域的应用。
聚氨酯的性能,归根结底受大分子链形态结构的影响。特别是聚氨酯弹性体材料,软段和硬段的相分离对聚氨酯的性能至关重要,聚氨酯的独特的柔韧性和宽范围的物性可用两相形态学来解释。聚氨酯材料的性能在很大程序上取决于软硬段的相结构及微相分离程度。适度的相分离有利于改善聚合物的性能。从微观形态结构看,在聚氨酯中,强极性和刚性的氨基甲酸酯基等基团由于内聚能大,分子间可以形成氢键,聚集在一起形成硬段微相区,室温下这些微区呈玻璃态次晶或微晶;极性较弱的聚醚链段或聚酯等链段聚集在一起形成软段相区。软段和硬段虽然有一定的混容,但硬段相区与软段相区具有热力学不相容性质,导致产生微观相分离,并且软段微区及硬段微区表现出各自的玻璃化温度。软段相区主要影响材料的弹性及低温性能。硬段之间的链段吸引力远大于软段之间的链段吸引力,硬相不溶于软相中,而是分布其中,形成一种不连续的微相结构,常温下在软段中起物理交联点的作用,并起增强作用。故硬段对材料的力学性能,特别是拉伸强度、硬度和抗撕裂强度具有重要影响。这就是聚氨酯弹性体中即使没有化学交联,常温下也能显示**度、高弹性的原因。TPU除了在鞋类行业大放异彩,还在消费电子、航空、汽车、工业电缆和电线等高要求市场行业展现不俗的魅力。安徽耐化学品TPU
TPU和PUR机器人电缆耐寒性突出,在低温的传输稳定性优于其他材质,是航空领域的热门材料较优的选择。浙江耐水解TPU材料
1958年,SchollenbergeC.S.首先提出物理交换(实质上交联)的理论。所谓物理交换是指在线性聚氨酯分子链之间,存在着遇热或溶剂呈可逆性的“连接点”,它实际上不是化学交联,但起化学交联的作用。由于这种物理交联的作用,聚氨酯形成了多相形态结构理论,聚氨酯的氢键对其形态起了强化作用,并使其耐受更高的湿度。正是由于物理交联理论,使得市场上出现了除浇注和混炼之外的另一类聚氨酯的品种——热塑性聚氨酯。%0D%0A%0D%0A像浇注型聚氨酯(液体)和混炼型聚氨酯(固体)一样,TPU具有高模量、**度、高伸长和高弹性,优良的耐磨、耐油、耐低温、耐老化性能。浙江耐水解TPU材料
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。