>> 当前位置:首页 - 产品 - 上海自主研发刀具状态监测系统 上海盈蓓德智能科技供应

上海自主研发刀具状态监测系统 上海盈蓓德智能科技供应

信息介绍 / Information introduction

刀具健康是指刀具在加工过程中保持正常工作状态的能力。良好的刀具健康状态是保证加工质量和生产效率的基础。影响因素磨损:刀具在加工过程中会逐渐磨损,影响加工精度和表面质量。破损:刀具可能因过载、冲击等原因发生破损,导致加工中断和工件报废。热变形:高温环境下刀具可能发生热变形,影响加工精度。材料特性:不同材料的刀具具有不同的物理和化学性质,对加工环境和条件有不同的要求。维护措施定期检测:通过刀具状态监测技术定期检测刀具的状态,及时发现异常情况并采取措施。合理选用:根据加工材料和工艺要求合理选用刀具材料和类型。正确使用:遵守操作规程和刀具使用要求,避免过载、冲击等不当操作。维护保养:定期对刀具进行清洗、润滑和更换磨损部件等维护保养工作。综上所述,刀具状态监测与刀具健康是机械加工领域中不可或缺的环节。通过先进的监测技术和有效的维护措施,可以确保刀具在加工过程中保持良好的工作状态,提高加工质量和生产效率。灵敏度高的刀具状态监测系统,能对刀具微小磨损或早期故障迹象的检测能力,能够在刀具磨损初期就发现问题。上海自主研发刀具状态监测系统

上海自主研发刀具状态监测系统,刀具状态监测

刀具监测主要采用人工检测、离线检测和在线检测三种策略。人工检查是指工人在加工过程中可以凭经验检查刀具的状态;离线检测是在加工前专门对刀具进行检测,预测其寿命,看是否能胜任当前的加工;在线检测又称实时检测,是在加工过程中对刀具进行实时检测,并根据检测结果做出相应的处理。目前刀具检测的算法有很多,有的是利用理论计算刀具上应力的变化来判断刀具的损伤.有的是利用时间序列分析来检测刀具,有的是利用神经网络技术来检测刀具。还有的是利用小波变换理论和神经网络技术来检测刀具,但都是以理论为主。考虑到刀具的塑性损伤在数控加工中很少发生,磨损对数控加工的安全性影响很小,并且可以通过离线检测进行加工,通过在线检测,可以判断微裂纹在当前载荷条件下是否会扩展。如果有可能扩大,我们认为载 荷是危险的,通过减少刀具的进给量来减少刀具上的载荷,以保证刀具的安全性。盈蓓德科技-刀具状态监测。上海基于振动分析的刀具状态监测技术规范刀具状态监测利用振动传感器获取刀具切削时产生的振动信号。刀具的异常状态往往会引起振动特征的改变。

上海自主研发刀具状态监测系统,刀具状态监测

随着大数据、人工智能等技术的不断发展,刀具状态监测技术将向更加智能化、精细化的方向发展。未来,将出现更多基于深度学习等先进技术的监测方法和系统,实现刀具状态的实时、精细监测和预测。同时,随着物联网技术的普及和应用,刀具状态监测将更好地融入智能制造体系中,为提升加工质量和效率、降低生产成本提供有力支持。挑战与解决方案挑战多种失效形式并存且劣化过程复杂多变,传统方法难以准确监测。采集样本标签需要停机测量刀具,模型训练样本获取效率低。忽略了多种失效形式之间的相互关系,导致模型精度与泛化能力不足。解决方案采用数据驱动的算法构建多种失效形式与刀具状态之间的映射关系,实现监测。引入深度学习等先进算法,提高模型的学习能力和泛化能力。优化传感器布局和信号采集方式,提高样本获取效率和质量。

针对刀具磨损状态在实际生产加工过程中难以在线监测这一问题,提出一种通过通信技术获取机床内部数据,对当前的刀具磨损状态进行识别的方法。通过采集机床内部实时数据并将其与实际加工情景紧密结合,能直接反映当前的加工状态。将卷积神经网络用于构建刀具磨损状态识别模型,直接将采集到数据作为输入,得到了和传统方法精度近似的预测模型,模型在训练集和在线验证试验中的表现都符合预期。刀具磨损状态识别的方法在投入使用时还有一些问题有待解决:①现有数据是在相同的加工条件下测得的,而实际加工过程中,加工参数以及加工情景是不断变化的,因此需要在下一步的研究中,进行变参数试验,考虑加工参数对于刀具磨损的影响,并针对常用的一些加工场景,建立不同的模型库。变换加工场景时,通过获取当前场景,及时匹配相应的预测模型即可。②本研究中的模型是一个固定的模型。今后需要根据实时的信号以及已知的磨损状态,对模型进行实时更新,从而在实时监测过程中实现自学习,不断提升模型的精度和预测效果。盈蓓德科技-刀具状态监测系统。刀具状态监测是确保机械加工过程高效、高质量和安全运行的重要环节。

上海自主研发刀具状态监测系统,刀具状态监测

刀具状态监测系统对于提高机械加工的生产效率、加工质量、刀具寿命和生产安全性等方面都具有重要作用。它是现代机械加工中不可或缺的一部分,对于推动制造业的智能化、绿色化发展具有重要意义。刀具状态监测系统的优点主要体现在以下几个方面:提高生产效率:通过实时监测刀具的状态,系统能够及时发现刀具的磨损、破损或异常情况,从而避免由于刀具问题导致的停机或加工中断。这**减少了生产过程中的非计划停机时间,提高了生产效率和设备利用率。提升加工质量:刀具状态直接影响加工精度和表面质量。监测系统能够精确掌握刀具的磨损情况、几何尺寸变化等,从而及时调整切削参数或更换刀具,确保加工过程中的稳定性和一致性,提升加工质量和产品合格率。刀具状态监测系统能够准确识别刀具的磨损模式,并预测刀具的失效时间,从而及时进行刀具更换。上海基于AI技术的刀具状态监测方案

刀具状态监测系统计算准确率、召回率等指标,准确率越高,说明系统对刀具状态的判断越准确。上海自主研发刀具状态监测系统

基于图像处理的监测系统:利用安装在机床上的摄像头获取刀具的图像,通过图像处理技术分析刀具的磨损、破损情况。多传感器融合监测系统:结合多种不同类型的传感器,如力传感器、振动传感器、温度传感器等,综合分析刀具的状态,提高监测的准确性和可靠性。一家小型机械加工厂,加工任务相对简单,预算有限,那么可以选择操作简单、成本较低的振动监测系统;而对于大型的汽车零部件制造企业,生产规模大、工艺复杂,可能更适合采用多传感器融合的监测系统,尽管成本较高,但能满足高精度和高稳定性的要求。上海自主研发刀具状态监测系统

免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。

查看全部介绍
推荐产品  / Recommended Products