当前纳米力学主要应用的测试手段是纳米压痕和基于原子力显微镜(AFM) 的力—距离曲线方法,实际上还有另外一种基于AFM 的纳米力学测试方法——扫描探针声学显微术(atomic force acoustic microscopy,AFAM)。AFAM具有分辨率高、成像速度快、相对误差低、力学性能敏感度高等优点。然而,目前AFAM 的应用还不够普遍,相关领域的学者对AFAM 了解和使用的还不多。为此,我们在前期研究的基础上,经过整理和凝练,形成了这部专著,目的是推动AFAM这种新型纳米力学测量方法在国内的普遍应用。纳米力学测试可以帮助解决材料在实际使用过程中遇到的损伤和磨损问题。福建表面微纳米力学测试系统
原位纳米压痕仪的主要功能为:安装于SEM或者FIB中,可以对金属材料、陶瓷材料、生物材料及复合材料等各种材料精确施加载荷、检测形变量。在电镜下进行压痕、压缩、弯曲、划痕、拉伸和疲劳等力学性能测试;此外,还可研究材料在动态力、热等多场耦合条件下结构与性能的关系。ALEMNIS原位纳米压痕仪可与多种分析设备联用,如扫描电镜、光学显微镜和同步辐射装置等,并实现多种应用场景。该原位纳米压痕仪是一款能实现本征位移控制模式的压痕仪。依托于该设备的精巧设计及精细加工,对于不同的应用场景,其均具有灵活性、精确性和可重复性。湖北核工业纳米力学测试方法纳米力学测试可以帮助研究人员了解纳米材料的变形和断裂机制,为纳米材料的设计和优化提供指导。
纳米压痕法:纳米压痕硬度法是一类测量材料表面力学性能 的先进技术。其原理是在加载过程中 试样表面在压头作用下首先发生弹性变形,随着载荷的增加试样开始发生塑性变形,加载曲线呈非线性,卸载曲线反映被测物体的弹性恢复过程。通过分析加卸载曲线可以得到材料的硬度和弹性模量等参量。纳米压痕法不只可以测量材料的硬度和弹性模量,还可以根据压头压缩过程中脆性材料产生的裂纹估算材料的断裂韧性,根据材料的位移压力曲线与时间的相关性获悉材料的蠕变特性。除此之外,纳米压痕法还用于纳米膜厚度、微结构,如微梁的刚度与挠度等的测量。
纳米纤维已经展现出各种有趣的特性,除了高比表面积-体积比,纳米纤维相比于块状材料,沿主轴方向有更突出的力学特性。因此纳米纤维在复合材料、纤维、支架(组织工程学)、药物输送、创伤敷料或纺织业等领域是一种非常有应用前景的材料。纳米纤维机械性能(刚度、弹性变形范围、极限强度、韧性)的定量表征对理解其在目标应用中的性能非常重要,而测量这些参数需要高度专业画的仪器,必须具备以下功能:以亚纳米的分辨率测量非常小的变形;在测量的时间量程(例如100 s)内在纳米级的位移下保持高度稳定的测量系统;以亚纳米分辨率测量微小力;处理(捡取-放置)纳米纤维并将其放置在机械测试仪器上。纳米力学测试通常在真空或者液体环境下进行,以保证测试的准确性。
经过三十年的发展,目前科学家在AFM 基础上实现了多种测量和表征材料不同性能的应用模式。利用原子力显微镜,人们实现了对化学反应前后化学键变化的成像,研究了化学键的角对称性质以及分子的侧向刚度。Ternes 等测量了在材料表面移动单个原子所需要施加的作用力。各种不同的应用模式可以获得被测样品表面纳米尺度力、热、声、电、磁等各个方面的性能。基于AFM 的定量化纳米力学测试方法主要有力—距离曲线测试、扫描探针声学显微术和基于轻敲模式的动态多频技术。纳米力学测试可以应用于纳米材料的力学模拟和仿真,加速纳米材料的研发和应用过程。湖北纺织纳米力学测试厂家
测试内容丰富多样,包括硬度、弹性模量、摩擦系数等,助力材料研究。福建表面微纳米力学测试系统
谱学技术微纳米材料的化学成分分析主要依赖于各种谱学技术,包括紫外-可见光谱红外光谱、x射线荧光光谱、拉曼光谱、俄歇电子能谱、x射线光电子能谱等。另有一类谱仪是基于材料受激发的发射谱,是专为研究品体缺陷附近的原子排列状态而设计的,如核磁共振仪、电子自旋共振谱仪、穆斯堡尔谱仪、正电子湮灭等等。热分析技术,纳米材料的热分析主要是指差热分析、示差扫描量热法以及热重分析。三种方法常常相互结合,并与其他方法结合用于研究微纳米材料或纳米粒子的一些特 征:(1)表面成键或非成键有机基团或其他物质的存在与否、含量多少、热失重温度等(2)表面吸附能力的强弱与粒径的关系(3)升温过程中粒径变化(4)升温过程中的相转变情况及晶化过程。福建表面微纳米力学测试系统
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。