这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS管,同时高压侧的MOS管也同样会面对1和2中提到的问题。在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构。于是我设计了一个相对通用的电路来满足这三种需求。mos管工作原理图如下:用于NMOS的驱动电路用于PMOS的驱动电路NMOS驱动电路做一个简单分析Vl和Vh分别是低端和的电源,两个电压可以是相同的,但是Vl不应该超过Vh。Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4不会同时导通。R2和R3提供了PWM电压基准,通过改变这个基准,可以让电路工作在PWM信号波形比较陡直的位置。Q3和Q4用来提供驱动电流,由于导通的时候,Q3和Q4相对Vh和GND低都只有一个Vce的压降,这个压降通常只有,低于。R5和R6是反馈电阻,用于对gate电压进行采样,采样后的电压通过Q5对Q1和Q2的基极产生一个强烈的负反馈,从而把gate电压限制在一个有限的数值。这个数值可以通过R5和R6来调节。后,R1提供了对Q3和Q4的基极电流限制,R4提供了对MOS管的gate电流限制,也就是Q3和Q4的Ice的限制。必要的时候可以在R4上面并联加速电容。
栅极电压还没有到达VGS(th),导电沟道没有形成,MOSFET仍处于关闭状态。2.[t1-t2]区间,GS间电压到达Vgs(th),DS间导电沟道开始形成,MOSFET开启,DS电流增加到ID,Cgs2迅速充电,Vgs由Vgs(th)指数增长到Va。3.[t2-t3]区间,MOSFET的DS电压降至与Vgs相同,产生Millier效应,Cgd电容增加,栅极电流持续流过,由于Cgd电容急剧增大,抑制了栅极电压对Cgs的充电,从而使得Vgs近乎水平状态,Cgd电容上电压增加,而DS电容上的电压继续减小。4.[t3-t4]区间,至t3时刻,MOSFET的DS电压降至饱和导通时的电压,Millier效应影响变小,Cgd电容变小并和Cgs电容一起由外部驱动电压充电,Cgs电容的电压上升,至t4时刻为止.此时Cgs电容电压已达稳态,DS间电压也达小,MOSFET完全开启。
江苏芯钻时代电子科技有限公司,专业从事电气线路保护设备和电工电力元器件模块的服务与销售,具有丰富的熔断器、电容器、IGBT模块、二极管、可控硅、IC类销售经验的专业公司。公司以代理分销艾赛斯、英飞凌系列、赛米控系列,富士系列等模块为主,同时经营销售美国巴斯曼熔断器、 西门子熔断器、美尔森熔断器、力特熔断器等电气保护。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。