智能手环 当我们走路或跑步时,我们创造了一些加速模式,当我们的脚接触地面时,我们减速或慢下来,当我们的脚离开地面时,我们加速。由于这些行走和奔跑对我们来说是自然的,我们只是从来没有注意到这个微小的加速度。 智能手环里也包含了IMU传感器,它能够感应到这种微小的变化,通过感应这些运动,判断人是在走路、跑步还是静止不动,这样将数据输出到手环里的计步器,从而统计运动步数。 但由于手环的体积较小,致使所用的IMU传感器体积比较小、灵敏度较低,故统计的步数也不够准确。凌思科技为您提供先进的惯性导航系统,有想法的可以来电购买先进的惯性导航系统!LINS-I500惯性导航系统
在工业市场上,诸如震动分析、平台校正、一般运动控制之类的应用都需要高集成度和高可靠度的解决方案,而且在许多情况下检测元件是直接嵌入到现有设备中。此外,还必须提供足够的控制、校准和编程功能,使器件真正单独自足。一些应用范例包括: ● 机器自动化:通过提高位置检测精度,并且更加严格地将此信息与远程控制或编程设置的运动相关联,可以使自治或远程控制的精密仪器和机械臂更加精确、有效。 ● 工业机械的状态监控:通过将传感器更深地嵌入机械内部,并且借由传感器性能和嵌入式处理而更早、更准确地掌握状态变化的迹象,可以获得更实用的价值。 ● 移动通信和监控:无论是陆地、航空还是海上交通工具,惯性传感器都有助于其实现稳定(天线和相机)和定向导航(利用GPS和其他传感器进行航位推算)。广州LINS358惯性导航模块厂家凌思科技是一家专业提供先进的惯性导航系统的公司,有想法的不要错过哦!
从2010年起,美国凌思部高级研究计划局开展了不依赖卫星的导航系统的研发工作,旨在多方面替代GPS,而不是作为GPS系统的补充。 目前,该局联合美国密歇根大学的研究人员已经研制出了一种不依赖卫星的新型导航系统,它被集成在一个较有8立方毫米的芯片上,芯片中集成有3个微米级的陀螺仪、加速器和原子钟,它们共同构成了一个不依赖外界信息的自主导航系统。这名项目主管还称,按计划,这种新一代的导航系统将会首先被用于小口径凌思制导、重点人员监控,以及水下武器平台等GPS应用触及不到的领域。
IMU的标定过程主要涉及内参标定,其目的是消除或减少IMU系统内部产生的误差。IMU通常包含三轴陀螺仪和三轴加速度计,两者在测量原理和性能上有所不同。陀螺仪适合测量高速运动中的角速度,但存在零点漂移问题,易受温度等环境因素影响;加速度计则适合测量低频加速度,但数据易受震动影响。 内参标定的关键在于建立IMU误差的数学模型,主要包括零偏、尺度偏差和轴偏差。零偏是指IMU静止时测量的非零角速度或加速度;尺度偏差是由于物理量转换成电学量(如电压、电阻和电流)时,各轴之间的转换系数不一致;轴偏差则是由于制造过程中的不完美导致的。凌思科技是一家专业提供先进的惯性导航系统的公司,欢迎新老客户来电!
随着微电子技术的发展,出现了新型的惯性传感器微机械陀螺仪和加速度计。MEMS(Micro-Electro-Mechanical System,微机电系统/微电子机械系统)技术传感器也逐渐演变成为汽车传感器的主要部件。 其中MEMS的六轴惯性传感器。它主要由三个轴加速度传感器及三个轴的陀螺仪组成。 目前不管是传统汽车还是自动驾驶汽车用的惯性传感器通常是中低级的,其特点是更新频率高(通常为:1kHz),可提供实时位置信息。但它有个致命的缺点——他的误差会随着时间的推进而增加,所以只能在很短的时间内依赖惯性传感器进行定位。通常在自动驾驶车辆中与GNSS(全球导航卫星系统)配合一起使用,称为组合惯导。凌思科技为您提供先进的惯性导航系统,期待您的光临!山东MMG200惯性导航单元厂家
凌思科技为您提供先进的惯性导航系统,欢迎您的来电哦!LINS-I500惯性导航系统
采用MEMS制成的IMU传感器,尺寸通常为20微米至1mm,由于其物理尺寸小型化、价格低、节能性,在消费电子领域得到普遍应用。 根据不同的使用场景,对IMU的精度有不同的要求,精度高,也意味着成本高。 IMU的精度、价格和使用场景: 低精度IMU:应用在普通的消费级电子产品中,这种低精度的IMU十分廉价,普遍应用于手机、运动手表中,常用于记录行走的步数。 中精度IMU:应用于无人驾驶中,价格从几百块到几万块不等,取决于此无人驾驶汽车对定位精度的要求。 高精度IMU:应用于导弹或航天飞机。就以导弹为例,从导弹发射到击中目标,宇航级的IMU可以达到极高精度的推算,误差甚至可以小于一米。LINS-I500惯性导航系统
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。