超声微泡作为纳米医学,在医学领域的诊断和***方面具有多方面的优势,目前,超声微泡已发展为多模态造影剂、光热剂和***剂。市面上有各种商用mb造影剂,如Levovist、Definity、option、Sonazoid和Sonovue,具有不同的特性、成分和尺寸变化,范围在1-8µm。例如,Levovist(基于空气填充的半乳糖/棕榈酸mb)可以通过减少噪声信号来改善超声成像,而SonoVue(基于六氟化硫填充的脂质mb)在外周血中高度稳定。在临床前和临床阶段的诊断中,超声微泡作为造影剂与成像仪器相结合,辅助疾病的可视化和表征。这种成像过程被称为分子成像(MI),因为它可以在动物和人类的分子和细胞水平上进行观察。由于MI的非侵入性,它的应用具有附加价值,它为组织表型的检测和评估以及早期疾病提供了实时可视化。更重要的是,MI还可用于分析细胞相互作用和监测***递送情况。为了获得有利的结果,MI需要两个组成部分,即成像仪器和纳米药物。理想情况下,使用的仪器必须是非侵入性的,并且具有高分辨率和灵敏度的能力,可以检测和监测成像剂。多年来,脂溶药物已被纳入运载工具,以避免全身毒性。天津超声微泡技术公司
超声联合纳米微泡进行核酸输送超声联合纳米微泡进行DNA传递。不考虑超声穿孔现象,建议采用US与带核酸的微泡相互作用来提高传输效率。这种策略也可能有助于遗传物质的位点特异性释放,从而减少非共振组织转染。通过纳米微泡转移基因已经采用了几种技术,从基因的并发管理到纳米泡系统内的内涵。有多种方法,包括利用阳离子脂质组成纳米气泡的外壳用于DNA的静电附着,在制备过程中直接将DNA物理组装在外壳中,在外壳上应用阳离子聚合物层用于DNA的静电相互作用,携带DNA的纳米微泡载体的共价结合以及利用兼容的DNA链建立纳米微泡。分析发现,在体外,基于脂质的纳米微泡比基于白蛋白的纳米微泡引起几次基因转染。此外,在小鼠肝脏中也观察到脂基纳米微泡的主要基因转移。亚微米大小的气泡与传统的手持式超声检测仪器相结合,已被证明是一种高效的基因转移试剂。亚微米尺度的气泡被开发并建议作为一种有前景的基因传递方法。天津超声微泡技术公司基于EPR的纳米颗粒靶向策略主要致力于调整药物或载体的大小和/或利用配体连接涉及EPR效应的分子。
载药超声微泡造影剂另一种选择是通过赋予超声微泡生物启发策略,其中天然细胞膜可以用作构建超声微泡的材料。天然细胞膜具有固有的合适特性,如生物相容性、免疫逃逸、自我识别和主动靶向特性。已有研究表明,血小板生物纳米微泡对血管损伤具有优越的靶向能力,可用于超声造影成像。另一种可用于靶向***的候选细胞是白细胞或巨噬细胞,因为它们具有可以特异性结合***斑块中VCAM-1受体的表面蛋白。为了增强细胞膜的降解,可以将超声微泡与光热剂结合,从而随着温度的升高,增加了现场降解的速度,从而提高了药物在病变部位的释放速度。
超声联合纳米微泡递送RNA。YinT.等利用异源组装方法制备了携带siRNA的**纳米微泡,利用超声照射靶向SIRT2基因抗细胞凋亡。该制剂改善了siRNA-纳米微泡对基因组的沉默作用,从而***改善了*细胞的凋亡。因此,在裸啮齿动物的胶质瘤变体中观察到显着增强的***结果。YinT.等进一步研究建立了US-sensitive纳米微泡,同时携带***siRNA和紫杉醇(PTX),针对BCL-2基因***肝脏**,基于他们的研究结果。siRNA和PTX的有效递送是通过将纳米微泡注射到带有人HepG2异源瘤的裸鼠的血液循环中,并应用主动低频(低于1MHz)超声照射到肿瘤细胞的位置。在动物实验中,由于两种药物的联合抗肿瘤活性,使用低剂量的PTX可以抑制**的发展。为了***前列腺*,Wang等通过静电方法设计了携带雄***受体的纳米微泡。负载siRNA的纳米微泡与超声照射结合,极大地抑制了细胞生长,抑制了蛋白质和ARmRNA的产生。纳米微泡的直径通常在150-500纳米之间,是药物分布的诱人场景并且与微泡相比已证明可以改善聚集和保留。
递送***水平的药物或***性基因递送尚未证明静脉注射与临床相关浓度的微泡。大鼠心脏基因转染使用1毫升静脉注射超声造影剂,浓度约为1×109微泡/ml。将***性基因有效递送到大鼠胰腺的方法是,在外壳内注射1毫升含有该基因的微泡,注射浓度为5×109微泡/ml。这些研究使用的剂量远远大于推荐用于人体成像的剂量。能够通过小剂量静脉注射微泡成功转染的微泡剂的开发对未来的转化非常重要研究。然而,目前尚不清楚,是由于微泡的有效载荷能力较低而需要高浓度,还是超声波应用时需要高浓度的气泡。或者,可以考虑在肌肉或动脉内注射高浓度微泡以实现局部药物或基因递送的介入性技术。在小型临床前研究中,肌内注射微泡和质粒可产生一致的局部转染。将质粒DNA和微泡共同注入肾动脉,结合瞬时血管压迫和超声,已被证明可在肾脏中产生局部基因表达。将质粒DNA和微泡共同注射到脑脊液中,再加上超声波,产生了DNA转移到大鼠***系统。Tsunoda等人表明,与通过尾静脉注射相比,向左心室局部注射微泡和质粒DNA后,报告基因转染到心脏的数量增加了一个数量级。 将配体附着在微泡表面的基本方法有两种:要么通过直接共价键,要么通过生物素-亲和素连接。重庆合成超声微泡
载药超声微泡造影剂的设计之一是使药物由于细胞内pH值的变化或外部光或声音的刺激而释放。天津超声微泡技术公司
通过超声微泡诱导空化可以改变**血管和细胞膜的通透性。稳定空化(SC)和惯性空化(IC)都可以对*组织的血管壁和细胞膜造成机械干扰,从而提高EPR在**中的作用。超声作用于含有超声微泡的血管,可改变血管壁的通透性,导致药物外渗至间隙。***通透性的改变取决于多种因素,包括壳成分、气泡大小、***直径与气泡直径之比以及超声参数。除了改变血管壁的通透性外,超声微泡的空化还可以增强细胞膜的通透性。气泡的破裂和相关射流的产生可以瞬间破坏相邻的细胞膜。细胞膜内产生小孔,导致可修复或不可修复的声穿孔。在不同的超声参数下,细胞膜内会产生短暂的孔,外源物质因此可以被运输到细胞质中。超声微泡的崩溃还可以引起**组织中的细胞死亡,这进一步减轻了固体应力,并可以减少更深穿透的障碍。研究表明,空化效应可以通过三种不同的机制改变血管和细胞膜通透性:(1)在SC过程中振荡气泡受到规律的机械干扰时,细胞膜电位发生改变以促进内吞摄取。(2)在从SC到IC的转变过程中,振荡泡的体积发生了变化。血管内皮细胞之间的间隙暂时增加,血管内皮的完整性被破坏,从而增强了活性物质的扩散,活性物质可以进入组织。(3)基于IC产生的声孔作用,血管内皮细胞内产生瞬时孔隙。 天津超声微泡技术公司
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。