而漏极一端电压小,其值为VGD=vGS-vDS,因而这里沟道薄。但当vDS较小(vDS随着vDS的增大,靠近漏极的沟道越来越薄,当vDS增加到使VGD=vGS-vDS=VT(或vDS=vGS-VT)时,沟道在漏极一端出现预夹断,如图2(b)所示。再继续增大vDS,夹断点将向源极方向移动,如图2(c)所示。由于vDS的增加部分几乎全部降落在夹断区,故iD几乎不随vDS增大而增加,管子进入饱和区,iD几乎由vGS决定。N沟道增强型MOS管的特性曲线、电流方程及参数(1)特性曲线和电流方程1)输出特性曲线N沟道增强型MOS管的输出特性曲线如图1(a)所示。与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止区和击穿区几部分。2)转移特性曲线转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和区(恒流区),此时iD几乎不随vDS而变化,即不同的vDS所对应的转移特性曲线几乎是重合的,所以可用vDS大于某一数值(vDS>vGS-VT)后的一条转移特性曲线代替饱和区的所有转移特性曲线。3)iD与vGS的近似关系与结型场效应管相类似。在饱和区内,iD与vGS的近似关系式为式中IDO是vGS=2VT时的漏极电流iD。(2)参数MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压VP。
当GATE和BACKGATE之间的电压差小于阈值电压时,不会形成channel。当电压差超过阈值电压时,channel就出现了。MOS电容:(A)未偏置(VBG=0V),(B)反转(VBG=3V),(C)积累(VBG=-3V)。正是当MOS电容的GATE相对于backgate是负电压时的情况。电场反转,往表面吸引空穴排斥电子。硅表层看上去更重的掺杂了,这个器件被认为是处于accumulation状态了。MOS电容的特性能被用来形成MOS管。Gate,电介质和backgate保持原样。在GATE的两边是两个额外的选择性掺杂的区域。其中一个称为source,另一个称为drain。假设source和backgate都接地,drain接正电压。只要GATE对BACKGATE的电压仍旧小于阈值电压,就不会形成channel。Drain和backgate之间的PN结反向偏置,所以只有很小的电流从drain流向backgate。如果GATE电压超过了阈值电压,在GATE电介质下就出现了channel。这个channel就像一薄层短接drain和source的N型硅。由电子组成的电流从source通过channel流到drain。总的来说,只有在gate对source电压V超过阈值电压Vt时,才会有drain电流。
江苏芯钻时代电子科技有限公司,专业从事电气线路保护设备和电工电力元器件模块的服务与销售,具有丰富的熔断器、电容器、IGBT模块、二极管、可控硅、IC类销售经验的专业公司。公司以代理分销艾赛斯、英飞凌系列、赛米控系列,富士系列等模块为主,同时经营销售美国巴斯曼熔断器、 西门子熔断器、美尔森熔断器、力特熔断器等电气保护。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。