氮化铝陶瓷是一种高性能陶瓷材料,具有优异的物理、化学和机械性能,因此在许多领域得到了认可。
氮化铝结构陶瓷在航空航天领域中应用广。由于其强度高、硬度高和高温稳定性,氮化铝结构陶瓷可以用于制造高温发动机部件、导弹外壳、航空航天器热防护材料等。此外,氮化铝结构陶瓷还可以用于制造航空航天器的结构件,如航天器的热保护板、航天器的结构支撑件等。
氮化铝结构陶瓷在电子领域中也有很大的应用。由于其高绝缘性、高热导率和高耐腐蚀性,氮化铝结构陶瓷可以用于制造高功率电子器件、高频电子器件、微波器件等。此外,氮化铝结构陶瓷还可以用于制造半导体器件的基板、电子元器件的封装材料等。
绝缘耐磨耐高温氮化铝隔热块。深圳半导体工业氮化铝陶瓷
氮化铝陶瓷AIN晶体以〔AIN4〕四面体为结构单元共价键化合物,具有纤锌矿型结构,属六方晶系。化学组成 AI 65.81%,N 34.19%,比重3.261g/cm3,白色或灰白色,单晶无色透明,常压下的升华分解温度为2450℃。为一种高温耐热材料。热膨胀系数(4.0-6.0)X10-6/℃。多晶AIN热导率达260W/(m.k),比氧化铝高5-8倍,所以耐热冲击好,能耐2200℃的极热。此外,氮化铝具有不受铝液和其它熔融金属及砷化镓侵蚀的特性,特别是对熔融铝液具有极好的耐侵蚀性。深圳硬度高隔热氮化铝陶瓷板氮化铝陶瓷结构件定制加工找鑫鼎陶瓷。
氮化铝陶瓷相较其他陶瓷材料,与硅相匹配的热膨胀系数,加上很好的热导性,更有利于应用于电子产业。根据《AlN陶瓷热导率及抗弯强度影响因素研究的新进展》的研究中提到,AlN因其热膨胀系数与Si匹配度高而被关注,而传统的基板材料如Al2O3由于其热导率低,其值约为AlN陶瓷的1/5且线膨胀系数与Si不匹配,已经不能够满足实际需求。BeO与SiC陶瓷基板的热导率也相对较高,但BeO毒性高,SiC绝缘性不好。而AlN作为一种新型高导热陶瓷材料,具有热膨胀系数与Si接近、散热性能优良、无毒等特性,有望成为替代电子工业用陶瓷基板Al2O3、SiC和BeO的较好材料。
氮化铝陶瓷可用作高功率器件材料。
功率传输的绝缘材料需具备一定的电绝缘性能及较高的热传导性能,还需要具有优异的机械承载能力,氮化铝陶瓷具有大于10^13Ω·cm的电阻率,190W/(m·K)以上的热导率以及高达400MPa的弯曲强度,与高功率器件高导热、电绝缘和机械承载的要求相吻合。在无线收发系统中,收发组件(TR组件)的固态放大电路采用输出功率更高的宽禁带半导体功率器件,具备高导热特性的氮化铝(AlN)可以将内部热量传导至散热器,避免组件内部温度过高。TR组件充分利用氮化铝基板的高导热、强度高特性,采用多层高温共烧技术,解决层叠结构高密度装配的射频信号垂直互联,以及散热和密封等问题。 电子陶瓷--氮化铝陶瓷零件源头厂家--鑫鼎陶瓷。
氮化铝陶瓷可做高温绝缘材料,其性能指标的优劣主要取决于合成方式与纯度,材料内未被氮化的游离硅,在制备中带入的碱金属、碱土金属、铁、钛、镍等杂志,均可恶化氮化铝陶瓷的电性能。
氮化铝陶瓷具有较高的机械强度,一般热压制品的抗折强度500~700MPa ,高的可达1000~1200MPa;反应烧结后的抗折强度200MPa ,高的可300~400MPa。虽然反应烧结制品的室温强度不高, 但在1200~1350℃的高温下 ,其强度仍不下降。氮化铝的高温蠕变小,例如,反应烧结的氮化硅在1200℃时荷重为24MPa,1000h后其形变为0.5 % 可定制加工氮化铝电子绝缘高温工业配件。深圳机械零件氮化铝陶瓷块
氮化铝陶瓷相比其他陶瓷有哪些优势?深圳半导体工业氮化铝陶瓷
在氮化铝陶瓷中的应用,氮化铝为六方纤锌矿结构,具有良好的抗热震性、绝缘体、热膨胀系数低和力学性能,理论热导率达320W·m-1·K-1,即使在特殊气氛中也有优异的耐高温性能,是理想的大规模集成电路基板和封装材料。
氮化铝陶瓷有以下出色的导热性能:(1)热导率高,满足器件散热需求;(2)耐热性好,满足功率器件高温(大于200°C)应用需求;(3)热膨胀系数匹配,与芯片材料热膨胀系数匹配,降低封装热应力;(4)介电常数小,高频特性好,降低器件信号传输时间,提高信号传输速率;(5)机械强度高,满足器件封装与应用过程中力学性能要求;(6)耐腐蚀性好,能够耐受强酸、强碱、沸水、有机溶液等侵蚀;(7)结构致密,满足电子器件气密封装需求。
深圳半导体工业氮化铝陶瓷
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。