NanotestVantage介绍:纳米划痕模块纳米划痕模块已被设计为提供(1)宽载荷范围、(2)划伤时的高横向刚性和(3)高摩擦灵敏度的比较好组合。该模块扩展了仪器执行的纳米摩擦学测试的能力,包括单次划痕、多次划痕和磨损测试、表面轮廓测量和摩擦测量。它特别适用于评估耐磨料耐磨性和涂层失效的临界载荷。纳米测试优势加载头具有较高的横向刚度,因此在测试硬涂层时非常有效,即使是那些表面粗糙度非常高的涂层。NanotestVantage介绍:纳米划痕模块纳米划痕模块已被设计为提供(1)宽载荷范围、(2)划伤时的高横向刚性和(3)高摩擦灵敏度的比较好组合。该模块扩展了仪器执行的纳米摩擦学测试的能力,包括单次划痕、多次划痕和磨损测试、表面轮廓测量和摩擦测量。它特别适用于评估耐磨料耐磨性和涂层失效的临界载荷。英国MML纳米压痕仪批发就找四川沃顿科技有限公司。成都英国MML纳米压痕仪批发价
NanotestVantage的设计是同时适应系统的低负载装载头和可选的高负载装载头,载荷范围从0.01mN到30N。这节省了时间,因为不像其他仪器,不需要物理改变和重新校准加载头。第二个头提供微压痕和微划痕能力,以及的其他微机械测量,用于30N微米尺度力学测试。市场上没有其他的纳米力学测试和表征仪器能与NanotestVantage的环境能力相匹配。该系统独特的、高精度的水平载荷对于在高温下进行准确和可靠的测试至关重要,实际上很大程度上消除了热漂移。四川沃顿科技有限公司微纳米摩擦供应商成都极端环境微纳米力学测试系统批发就找四川沃顿科技有限公司。
NanotestVantage介绍:高温纳米力学的最高温度至850°C压头和样品的双主动加热、的阶段设计和的温度控制方法,确保了在使用系统的高温选项时,高达850°C的可重复高温测量所需的比较好热稳定性通过增加水冷却和一个在低氧大气中进行测试的环境室,可以进行可靠的测量。1、主动针尖加热-压头和样品都是主动和的加热,确保两者等温接触。2、前列加热功率反馈系统-快速响应,以减少接触时的热流3、水平加载-纳米测试优势的独特加载配置意味着没有热流到加载头或深度测量传感器。4、高度局部加热-在加热区域周围的隔热罩和隔热罩,确保了高温实验中仪器的稳定性。5、控制协议-软件例程用于精确匹配压头和样品温度,以确保温度精度范围控制在0.1ºC内。6、与时间相关的测量-由于在高温测量过程中没有发生明显的热漂移,因此有可能进行长时间的测试(e。g.,压痕蠕变测试)是其他系统不可能的。四川沃顿科技有限公司
NanotestVantage介绍:纳米测试中的纳米微摩擦/纳米磨损模块用于往复磨损和微摩擦测试。通过改变磨损轨道长度,可以使用同一模块进行往复纳米磨损和真正的纳米级摩擦测试。这种技术对于研究涂层和金属材料的磨损初始阶段非常重要。由于NanotestVantage的稳定性非常高,可以进行高循环磨损试验。这使得在较低的接触压力下进行测试成为可能,更能反映涂层逐渐失效的真实磨损情况。纳米磨损试验可用于更有效地开发具有更好耐磨性的材料。微纳米力学测试系统订购就找四川沃顿科技有限公司。
NanotestVantage介绍:纳米划痕模块纳米划痕模块已被设计为提供(1)宽载荷范围、(2)划伤时的高横向刚性和(3)高摩擦灵敏度的比较好组合。该模块扩展了仪器执行的纳米摩擦学测试的能力,包括单次划痕、多次划痕和磨损测试、表面轮廓测量和摩擦测量。它特别适用于评估耐磨料耐磨性和涂层失效的临界载荷。纳米测试优势加载头具有较高的横向刚度,因此在测试硬涂层时非常有效,即使是那些表面粗糙度非常高的涂层。NanotestVantage介绍:纳米划痕模块纳米划痕模块已被设计为提供(1)宽载荷范围、(2)划伤时的高横向刚性和(3)高摩擦灵敏度的比较好组合。该模块扩展了仪器执行的纳米摩擦学测试的能力,包括单次划痕、多次划痕和磨损测试、表面轮廓测量和摩擦测量。它特别适用于评估耐磨料耐磨性和涂层失效的临界载荷。纳米测试优势加载头具有较高的横向刚度,因此在测试硬涂层时非常有效,即使是那些表面粗糙度非常高的涂层。纳米压痕仪购买就找四川沃顿科技有限公司。成都英国MML纳米压痕仪批发价
极端环境微纳米力学测试系统购买就找四川沃顿科技有限公司。成都英国MML纳米压痕仪批发价
高温纳米力学测试为我们提供了一条方便的途径来表征高温应用中所用材料的力学性能。这种测试提供了比在室温下的测量更相关的特征。随着测试仪器技术的不断进步,高温纳米机械测试在核工业等安全关键领域的材料开发中变得越来越普遍。钨及其合金被认为是核聚变反应器中主要的等离子体表面材料。通过与牛津大学的科学家合作,NanotestXtreme已被用于测试多晶钨在950°C下的力学性能。在高真空条件下进行测试是必要的,因为钨在>500°C的空气中快速氧化。成都英国MML纳米压痕仪批发价
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。