利用化学溶液湿法腐蚀的微针可以降低微针的制作成本,制作过程中不需要大型的刻蚀设备,在普通实验室就能够完成工艺制作。但腐蚀过程比较难以精确控制,并且需要进行实时观察,而且不确定因素还较多。溶液湿法腐蚀对硅片的晶向、腐蚀的温度、腐蚀的时间和掩膜形状的要求都是非常严格的。由于掩膜形状和腐蚀晶向的选择性,浙江固体微针封装,溶液湿法腐蚀形成的微针形状像山峰,所以比干法刻蚀形成的微针短,浙江固体微针封装,直径比较大,浙江固体微针封装,所以单位面积的微针数量比干法刻蚀的微针数量少。微针给药的概念早在上世纪70年代初就已经被提出。浙江固体微针封装
一种新型的给药技术是透皮给药技术,透皮给药技术是指在皮肤表面给药,使药物以接近恒定速度通过皮肤各层,经血管吸收进入体循环产生全身或局部作用的制剂,该类制剂通常称为透皮贴剂.在原理上来讲透皮给药与皮下注射或静脉输入给药是同一种投药的方法。透皮给药应用于治皮肤局部或全身疾病,比其他方式具有更加安全、稳定和病人适应性好的优点。其中被动透皮给药技术是以单纯的浓度梯度为驱动力使药物扩散透过皮肤进入血流产生药效。江苏实心微针阵列利用3D打印技术也可以制作微针。
通常情况来看,固体实心微针的优势在于可以刺穿细胞膜,增加皮肤的渗透性,以此来达到将疫苗释放、渗透、传输至血液或细胞中的目的。到目前为止,在市面上常见的固体微针大多数是由硅材料和金属材料制作而成。虽然金属微针力学强度较好,但是由于这种材料的自身生物相容性比较差,如果在使用过程中不小心折断,残留在皮肤里,就会使人体皮肤产生的损伤。由聚合物制成的微针则与常规的固体微针不同,它不仅具有足够的力学强度来刺穿人体皮肤角质层,同时还拥有优越的生物相容性。
起初,微针是由硅、金属、陶瓷或玻璃制成的, 制备过程复杂而且容易断裂,这使得人们不得不寻找新材料。聚合物因为具有多种独特的优势,正逐步取代传统材料成为制备微针的主要原料。由于微针的发展和人们对微针要求的提高,所以发明了新型溶胀微针、两段式微针等。微针给药结合了经皮给药和传统注射的优点,能显著提高药效,促进了蛋白质、纳米颗粒等大分子药物的透皮吸收速度。然而在给药过程中产品的释放是否可控,是否会对皮肤中产生破坏性损伤,在皮肤中形成的空隙是否可逆等问题, 使得微针技术的临床应用受到了制约,这些也正是微针技术面临的挑战。20世纪90年代才制作出硅微针。
用于经皮给药的微针有两种,一种是实心微针,一种是空心微针。实心微针是通过处理将药物附着在微针表面达到药物递送的目的,空心微针则是将药物通过微通道注入皮肤的方式来输送药物。目前研究的微针给药主要有以下几种方式 :1)先将微针阵列刺入角质层,在皮肤中形成微孔洞之后将其拔出,然后把含有药物的贴剂贴敷在有孔的皮肤上达到输送药物的目的;2)包囊药物微针给药,其中微针阵列是利用可以生物降解的材料制作而成;3)微针包衣给药,首先在实心微针体表面包裹一层药物,再将微针刺入皮肤实现持续给药,用以增加药物的渗透性;4)微注射方式经皮给药,一般选择空心微针阵列来实现。空心微针可以分为异面中空微针和共面中空微针。上海空心微针封装
MEMS微针从问世以来一直是研究人员比较关注的方面。浙江固体微针封装
除了硅、金属以及聚合物等材料之外, 还有很多材料也可用于微针的制备,如陶瓷、玻璃和智能纳米材料等。陶瓷微针是以陶瓷浆料为原料,利用模板铸造,使用烧结法制备,也可以采用双光子聚合法制备。玻璃微针多为空心结构,采用改良后的传统玻璃微管拉制技术制得,在给药和组织液提取方面都有着广泛的应用。但与陶瓷或玻璃等材料相比,利用高分子材料制备的微针具有很多优势,如生物相容性好、原料易得、不易断裂以及适宜批量化生产,因此聚合物微针逐渐成为微针制造的主材料。浙江固体微针封装
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。