HCL6系列压力变送器产品采用不锈钢隔离膜片的OEM压力传感器作为信号测量元件,并经过计算机自动测试,用激光调阻工艺进行了宽温度范围的零点和灵敏度温度补偿,广州TE温度传感器推荐。放大电路位于不锈钢壳体内,广州TE温度传感器推荐,将传感器信号转换为标准输出信号,充分发挥了传感器的技术优势,使压力变送器具有优异的性能。它抗干扰、过载和抗冲击能力强、温度漂移小、稳定性高,具有很高的测量精度,是工业自动化领域理想的压力测量仪表。压力传感器是在单晶硅片上扩散一个惠斯通电桥,被测介质(气体或液体)施压使桥壁电阻值发生变化(压阻效应)产生一个差动电压信号,此信号经专门的放大器,将量程相对应的信号转化成标准模拟信号或数字信号,广州TE温度传感器推荐。磁致伸缩液位传感器,欢迎来电咨询详情。广州TE温度传感器推荐
PTC温度传感器:PTC(PositiveTemperatureCoefficient)是一种具有正温度系数的半导体电阻,安装在定子槽内或绕组端部用于监视绕组的温度,PTC温度传感器按照响应温度来标识。在响应温度以下,PTC保持在一个相对较低的阻值状态,到响应温度时,PTC会以较大的系数快速增加至高阻值状态。由于PTC动作时阻值变化较大,通常可以将几个PTC进行串联使用,这样即使其中一个PTC动作,也可以被识别。电机上一般将3个PTC电阻分别置于三相绕组中,然后进行串联,用于产生报警或故障信号。温度传感器售价逻辑输出温度传感器?
非接触式温度传感器:非接触式温度传感器与被测对象互不接触,可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。比较常用的非接触式温度传感器的工作原理是基于黑体辐射基本定律的辐射测温法。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。
智能差压变送器是本公司采用因际先进技术,联合因内多方技术力量,共同研制开发的新型智能仪表。本仪表采用微处理器技术进行温度补偿和非线性补偿,从而大幅度提高仪表测量精度,改善温度特性,扩展了量程比,增添了智能组态功能,进一步满足了工业现场仪表高可靠、高稳定要求。关键元器件和零部件均采用进口,整机经过严格测试后出厂。产品质量可靠,品种规格齐全,安装使用简便等特点。智能电路板采用的集成电路和SMT技术,可以将转换电路,处理电路集中在1块电路板上。变送器的微处理器控制A/D和D/A转换模块的工作,同时也完成数字通讯和自诊断功能。工作时,微处理器控制A/D转换模块对来自敏感元件的模拟信号进行采样转换,并转换成数字信号。微处理器对数字信号进行处理,包括信号线性化,温度补偿,工程单位转换等。微处理器也能完成传感器的特征化,量程,阻尼时间以及其它功能。EPROM存储所有组态及微调参数,由于存储器是非易失性的,所以存储的参数在断电后不会丢失。热电偶传感器工作原理?
HCC1一体式温度变送器:1)宽电压供电、非线性修正、精度高;2)安装方便、耐高温;3)防雷击、截频干扰设计、抗干扰能力强;4)限流保护。HCC1系列温度变送器产品采用PT100作为信号测量元件,并经过计算机自动测试,用激光调阻工艺进行了宽温度范围的零点和灵敏度温度补偿。放大电路位于不锈钢壳体内,将传感器信号转换为标准输出信号,充分发挥了传感器的技术优势温度变送器具有优异的性能。它抗干扰、过载、温度漂移小、稳定性高,具有很高的测量精度,是工业自动化领域理想的温度测量仪表。Mf5000系列气体质量流量计,欢迎来电咨询详情。珠海数字显示温度传感器推荐
较早的温度传感器由德国物理学家赛贝发明,也就是后来的热电偶传感器的真正开始。广州TE温度传感器推荐
超声液位波变送器:1)测量流量、液位、低表压、真空和比重;2)两线制比较大量程可达30m;3)四线制比较大量程可达40m;4)小分辨率1mm;5)LCD/LED大显示屏。HCG9软不锈钢投入式液位变送器:1)采用进口扩散硅压力敏感元件和先进的膜片隔离技术;2)不锈钢毛细管连接,直接投入现场。安装简便;3)放大电路采用集成芯片,宽电压供电;4)防堵塞、防结垢、耐高温;5)防雷击、截频干扰设计、抗干扰能力强。HCG9系列集气简型液位变送器采用气体导压方式,用于测量高温、腐蚀性液体、污水等,变送器由不锈钢集气筒、不锈钢毛细管及接线盒组成,传感器部分与信号处理电路在接线盒内部,由投入液体内的集气简内的气体与介质接触,通过导气管将压力传递给传感器,避免了传感器与被测介质的直接接触,适用于高温腐蚀性液体测量等场合,有效地解决了高温腐蚀液体以及污水液位测量的难题。广州TE温度传感器推荐
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。