采纳率:53%9级轴流泵靠旋转叶轮的叶片对液体产生的作用力使液体沿轴线方向输送的泵,有立式、卧式、斜式及贯流式数种。其比转数n分别为500、700、850、1000、1250、1400、1600等;转轮直径为、、、、、。轴流泵叶轮装有2~7个叶片,在圆管形泵壳内旋转。叶轮上部的泵壳上装有固定导叶,用以消除液体的旋转运动,使之变为轴向运动,并把旋转运动的动能转变为压力能。轴流泵通常是单级式,少数制成双级式。流量范围很大,为180~360万立方米/时;扬程一般在20米以下。轴流泵一般为立式,叶轮浸没在水下面,也有卧式或斜式轴流泵。小型轴流泵的叶轮安装位置高出水面时,需要用真空泵排气引水启动。轴流泵的叶片分固定式和可调式两种结构,安徽WFB轴流泵。大型轴流泵的使用工况(主要指流量)在运行中常需要作较大的变动,调节叶片的安装角可使泵在不同工况下保持在高效率区运行。小型泵的叶片安装角一般是固定的。轴流泵属于动力式泵中比转数较高的一种,比转数为500~1600。泵的流量-扬程、流量-轴功率特性曲线在小流量区较陡,安徽WFB轴流泵,故应避免在这一不稳定的小流量区运行,安徽WFB轴流泵。轴流泵在零流量时的轴功率较大,因此泵在启动前必须先打开排出管路上的阀,以减小启动功率。立式轴流泵如何拆卸?安徽WFB轴流泵
叶顶泄漏涡向相邻叶片的压力面运动,空化区域变大,在泄漏涡上游壁面处,可以很明显地看到由于壁面和泄漏涡的相互作用产生的反向诱导涡I,其较终会被泄漏涡吸收,为泄漏涡的运动提供动力.当泄漏涡继续向前运动时,其空化区域继续扩大,同时,在叶片背面的片状空穴在轴向位置上变厚,如H所示.当到达弦长系数λ=较大值,在叶顶区域,此时并没有空泡覆盖,这说明了空化初生可能是在叶顶弦长某一位置,然后分别向叶顶前缘和尾缘发展.泄漏涡在向前发展时,其较终会离开叶顶区,此时泄漏涡空化与剪切层空化发生分离现象,如图11d所示.随着断面离开叶片尾缘,在弦长系数λ=.由以上分析可知,叶顶区空化的形成与发展通常都伴随着涡结构的演变与发展,两者之间的相互作用有待于更进一步地研究.5结论1)基于PANS湍流模型,准确预测了叶顶区域空化流.数值模拟得到的空化性能曲线和叶顶区空泡分布与试验吻合度较高,验证了PANS模型的适用性.2)通过数值模拟,得出了叶顶区不同的空化类型以及泄漏涡系,找到了在特定汽蚀余量下、在弦长系数λ=~较易发生空化的位置,为提出控制泄漏涡空化提供了一定的基础.3)通过研究叶片压力面和吸力面载荷分布可知,叶顶区空化是不稳定的。河北轴流泵山西水泵轴流泵技术方案!
具有防松锁定、为了保证潜水泵在长时间停机后,能顺利启动,为此在结构上设有电机防凝露装置(专利号ZL972),确保电机绝缘保证在300MΩ以上。主要原理是:潜水泵电机在实际运行中,有可能在停车时,渐渐吸潮,吸湿现象将反映在电机绝缘电阻的缓慢下降,进而造成电机的损害。为保护潜水电泵电机的绝缘性,提高耐用性,本保护装置通过检测电泵信号线电阻值的变化,当湿度达到,即时,通过端子检测到停机信号,一段时间,本装置除湿加热常开接点接通,驱动除湿加热装置。直至湿度达到70%自动停止加热。若电机一起动,本控制系统立即停止工作,机械密封设有防砂装置、轴承具备自润滑功能并与介质完全隔离。潜水泵结构上设有绕组超温报警开关,绕组漏水报警,轴承超温报警装置,机械密封设有漏水报警等功能,所有保护功能均通过保护器进行保护。、潜水轴流泵在无外部冷却系统下在≤40℃的介质中连续运转,运行方式为连续运行、间隙运行或长期停止的恢复运行,潜水泵采用鼠笼式异步电动机,防护等级为IP68,电动机按湿热型设计,具有防潮、防霉、防盐雾的性能,在长期停机后仍能保持优良的耐潮、耐压及起动性能。允许每小时启动15次以上。电动机的冷却方法分内外二路。
曝光时间为107μs.高速摄影布置如图4所示.图3模型泵测试段sectionofmodelpump图4高速摄影布置图speedphotographysetup4计算结果分析湍流模型验证图5为k-ε湍流模型与基于k-ε湍流模型修正后的PANS模型在叶顶区的涡黏度μt对比图,图中r*为径向系数,z*为轴向系数;PS,SS分别表示叶片的压力面、吸力面.由于PANS模型降低了模化的湍动能比例,因此可以有效克服传统RANS方法过大预测湍流黏度的缺陷,从而提高了不稳定空化流的预测精度.由图可以看出,较大的涡黏度主要发生在间隙内部、射流剪切层以及叶顶泄漏涡区域.如果涡黏度过大,将会致使叶顶泄漏涡与射流剪切层难以发生分离.因此,减小涡黏度能够促进泄漏涡的脱落,使泄漏涡易受到壁面“镜像涡”的诱导与剪切层发生分离,与试验观测到的结果相一致.经过对比,PANS模型在叶顶区模拟的涡黏度明显减小,从而可以很好地证明泵内流动模拟进入了PANS求解模式.汽蚀特性曲线图6为额定工况不同汽蚀余量下模型泵的扬程试验值与模拟值的对比.从图中可以看出,模拟得到的空化曲线与试验空化曲线趋势相一致,但还是存在一定的误差,试验值要明显高于模拟值,较大误差为、来流中的空化核数目等实际因素。河北电动空气控制阀轴流泵技术方案!
swirlingstrength)方法,实现轴流泵叶顶区空化流动的数值模拟,并与高速摄影试验作对比,以探索叶顶区域空化类型与叶顶泄漏涡涡系的关系,以及叶顶泄漏涡易发生空化的位置和叶顶泄漏涡及其空化的发展演变规律.1几何模型及网格划分几何模型研究对象为南水北调工程天津同台测试的等比例缩放模型泵,其几何参数:叶轮直径D2=200mm,叶轮叶片数Z=3,导叶叶片数Zd=7,转速n=1450r/min,设计流量QBEP=365m3/h,额定扬程H=m,叶顶间隙htip=1mm.根据模型泵的设计结构,计算区域包括泵内部全流场水体,主要由进口直管、叶轮、导叶、支撑段以及出口弯管组成,主要计算域如图1所示.网格划分叶轮和导叶是轴流泵的水力部件,其网格的质量和分布对性能的预测有着直接的影响.同时,叶轮叶顶区的网格划分对于叶顶泄漏涡的模拟十分重要[13].为了减小模拟误差以及获得更好的收敛性,对于整个计算域的水力部件采用六面体结构化网格.图2为叶轮和导叶的结构化网格划分.为了使泄漏流和泄漏涡在叶顶区能得到更好地求解,在叶顶区布置20层网格,使用逐层递增的方式,即越靠近转轮室壁面网格越密,叶轮采用J型拓扑,并在叶片附近用O型网格布置边界层;导叶采用H/O型拓扑结构。调节轴流泵的方法是什么。安徽WFB轴流泵
轴流泵的电压:380V,660V,6KV,10KV。安徽WFB轴流泵
实现自吸泵,真空泵,高压节能泵,管道泵等产品结构的合理升级,在现有产品产能和技术水准基础上,提高产品比重,提高国内市场占比,加快研发高自动化、环保型机械。作为中国自吸泵,真空泵,高压节能泵,管道泵重要的细分机种,是各类自吸泵,真空泵,高压节能泵,管道泵中收入率极高的产品之一,也被认为是未来极具成长性的工程机械产品。近年来,挖掘机一直是整个工程机械行业高速增长的关键性驱动力。他们开始认识到灌装生产生产型能够为其带来的好处。灌装生产线在食品、医药、日化生产企业中扮演着重要的角色,优化灌装生产线直接关系着产品的质量和生产的效率,因此成为各大生产企业不得不关注的话题。机械及行业设备工业正面临着产业变革的冲击,挑战前所未有,机遇也前所未有。我国机械工业应该以数字化、智能化、网络化、服务化、绿色化为发展方向,重点实现四大转变:一是由技术跟随型向技术引导型转变,二是由机械自动化向智能网联化转变,三是由生产制造型向融合服务型转变,四是由环境污染型向绿色低碳型转变。安徽WFB轴流泵
江苏振亚泵业科技有限公司位于靖江市生祠镇原红光镇江平路8号,交通便利,环境优美,是一家生产型企业。江苏振亚是一家有限责任公司企业,一直“以人为本,服务于社会”的经营理念;“诚守信誉,持续发展”的质量方针。公司拥有专业的技术团队,具有自吸泵,真空泵,高压节能泵,管道泵等多项业务。江苏振亚将以真诚的服务、创新的理念、***的产品,为彼此赢得全新的未来!
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。