绝缘检测功能测试要求:设备高压源输出设置为400V,10mA。高压正端及高压负端注入0-10MΩ绝缘电阻。在高压正与高压负端同时预留0.5uF与1.2uF Y电容,标准BMS发展趋势,使用开关控制Y电容接入状态。德智BMS解决方案: 用高压源输出高压400V,电池包正极(Pack+)接高压电源正极,电池包负极(Pack-)接高压电源负极,高压正端和负端分别串联100KΩ,200KΩ,400KΩ,标准BMS发展趋势,1MΩ电阻到GND,模拟高压正负极是否漏电,再通过Loadbox负载箱根据具体情况测试接入Y电容情况下,标准BMS发展趋势,监测绝缘精度,上位机读取CAN上绝缘电阻值。电池管理系统在电池和汽车的运行中起到实时监测电池状态的作用。标准BMS发展趋势
电池过充会着火、,磷酸铁锂过充至5V以上大部分只是冒烟,但是三元电池一旦过充,会发生。而且,过充电容易导致锂离子电池中的电解液分解释放出气体,从而导致电池鼓胀,严重的话甚至会冒烟起火;电池过放电会导致电池正极材料分子结构损坏,从而导致充不进去电;同时电池电压过低造成电解液分解,干涸发生析锂,回到电池内短路问题。BDU,是电池包电能进出的大门,通过高压电气接口与整车高压负载和快充线束连接,包含预充电路、总正继电器、总负继电器、快充继电器等,受主板控制在系统设计时应该选用可靠的电压采集线,在生产过程中严格管控,杜绝电压采集线的失效。现代化BMS现货新能源汽车热管理系统对续航里程和电池寿命有决定性的影响。
德智BMS电池测试系统以研华公司的IPC-610工控机为主控部分,集成安捷伦、泰克、艾德克斯、NI等品牌仪器构建弹性且高精确度的测试平台,并内含relay matrix回路切换功能。以70组可编程直流电源供应器,提供70组模拟电池包信号。系统采用标准的气动治具,治具类型以电子式提供密钥,确保进行正确的测试程序调用。通过可互换的治具,即可于不同的BCU与CSC/CMC的产品之间共享重要的仪控硬件,以大幅降低系统成本与前置时间。在建立了基础系统之后,即可迅速设计并建立新的治具和相关的测试软件。
电动车的关键组件之一是动力电池,动力电池为电动汽车提供能量,保证电动汽车的续航里程。动力电池的表现,除了依赖自身的材料,工艺等硬件素质外,还依赖电池管理系统的表现,就是大家常说的BMS(Battery Management System)。 BMS就像是电池的大脑,接收电池和外部各个接口的信息,分析和处理信息后,并发出执行指令,完成电池的充电,放电,保护,均衡,故障检测和故障预警等功能,确保电池的正常、高效、合理和安全的运行。BMS的主要组成可以分成闭环反馈的三大部分:信息采集,信息分析处理,输出决策执行指令。BMS借助自己使用的的负载管理算法为BCM提供电池状态信息。
BMS借助负载管理算法为BCM提供电池状态信息,BCM通过对发电机和DC/DC转换器进行控制来稳定和管理供电网络。DC/DC转换器为汽车内部的各个用电部件分配电能。通常,铅酸电池的BMS直接安装在电池夹上的智能连接器中。该连接器包括一个低阻值的分流电阻(通常在100μs2范围内)和-一个带有高度集成器件(具有准确测量和处理功能)的小型PCB,称为智能电池传感器(IBS,见图2)。IBS即便是在较恶劣的条件下以及在整个使用寿命中都能以高分辨率和高精确度测量电池电压、电流和温度,从而正确预测电池的充电状态(SoC)、健康状态(SoH)和功能状态(SoF)。这些参数定期或根据要求通过已获汽车行业认证的车载网络传送至BCM。德智BMS电池测试系统目前针对测试对象BCU通过德智解决方案可完成以下测试要求。标准BMS发展趋势
BMS主要作用是为了能够提高电池的利用率。标准BMS发展趋势
德智BMS解决方案:将产品继电器引脚分别接入Loadbox负载箱,通过继电器切换,实现开路、短地、短电源故障模拟,上位机读取的状态进行对比。温度采样测试要求:使用固定电阻值模拟对应的温度,195K(-40℃),42.524K(-10℃),10K(25℃),2.585K(65℃),1.451K(85℃)。德智解决方案:用精密电阻模拟不同温度输入,通过德智自制负载箱实现不同引脚的负载接入,CAN通讯回读采集温度值,上位机软件进行分析判断。德智自制Load box技术参数:RS232通讯接口 小功率负载卡2A ,通道:16;功率负载卡10A,通道:16;大功率负载卡 40A,通道:8。标准BMS发展趋势
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。