光的干涉:光具有波粒二象性。两列或几列光波在空间相遇时相互迭加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象。产生稳定干涉的条件:只有两列光波的频率相同,位相差恒定,振动方向一致的相干光源,才能产生光的稳定干涉。由两个普通**光源发出的光,不可能具有相同的频率,更不可能存在固定的相差,因此,不能产生稳定干涉现象。两列振幅为A1,、A2,频率为f,初始相位分别为∅1和∅2的光在空间叠加时的光强为:若光的振幅相等:相位角相同时,复合光强为原先的2倍,产生明条纹。当相位角相差180º(半个波长)时,苏州角锥角度测量激光干涉仪原理,复合光强为0,产生暗条纹。平面平晶,苏州角锥角度测量激光干涉仪原理、窗口玻璃、光学平面,苏州角锥角度测量激光干涉仪原理、金属平面、陶瓷平面等光滑表面面形的90°直角棱镜和角锥测量。苏州角锥角度测量激光干涉仪原理
激光器输出的纵模间隔为:ΔVL=C/(2nL0),式中C为光速,n为激光器腔内折射率,L0为激光器的腔长。选择激光器腔长,使其在多普勒带宽之内主要有二个纵模输出,可得到高频差的双频激光,例如选择腔长220mm,可得到频差为680MHz的双频激光。双纵模激光干涉仪采用等强度的稳频方法,由于频差大,原理上可以达到极高的测量速度,但是高频差也使光电接受、信号处理更为困难。激光干涉仪是以波长作为测量基准的,大频差造成的两束光的波长差别是不能忽略的,可以计算,在频差为680MHz时,可以引起的误差。因此必须确认产生多普勒频移的激光波长作为测量的基准。也由于此,双纵模激光干涉仪也难以应用在角度测量,直线度测量这样的利用差动原理的测量项目。江苏表面面形测量激光干涉仪能耗制动不同F数的柱面类(凸面、凹面)光滑表面面形测量。
双频激光干涉仪是应用频率变化来测量位移的,这种位移信息载于f1和f2的频差上,对由光强变化引起的直流电平变化不敏感,所以抗干扰能力强。它常用于检定测长机、 三坐标测量机、光刻机和 加工中心等的坐标精度,也可用作测长机、高精度三坐标测量机等的测量系统。利用相应附件,还可进行高精度 直线度测量、平面度测量和小角度测量。
激光干涉仪应用 (1)几何精度检测 可用于检测直线度、垂直度、俯仰与偏摆、平面度、平行度、球面测量、曲率半径测量、角锥角度、光学材质均匀性测量等
激光干涉仪工作原理:在氦氖激光器上,加上一个约0.03特斯拉的轴向磁场。由于塞曼分裂效应和频率牵引效应,激光器产生1和2两个不同频率的左旋和右旋圆偏振光。经1/4波片后成为两个互相垂直的线偏振光,再经分光镜分为两路。一路经偏振片1后成为含有频率为f1-f2的参考光束。另一路经偏振分光镜后又分为两路:一路成为*含有f1的光束,另一路成为*含有f2的光束。当可动反射镜移动时,含有f2的光束经可动反射镜反射后成为含有f2 ±Δf的光束,Δf是可动反射镜移动时因多普勒效应产生的附加频率,正负号表示移动方向(多普勒效应是奥地利人C.J.多普勒提出的,即波的频率在波源或接受器运动时会产生变化)。这路光束和由固定反射镜反射回来*含有f1的光的光束经偏振片2后会合成为f1-(f2±Δf)的测量光束。测量光束和上述参考光束经各自的光电转换元件、放大器、整形器后进入减法器相减,输出成为*含有±Δf的电脉冲信号。激光干涉仪测试项目:光学材质均匀性。
计量检测,光学镜片检测、光学组件检测,手机背板和相机镜头检测,半导体晶圆检测,LED衬底蓝宝石检测,安防镜头和车载镜头检测,航空航天成像系统检测,超精密机械件检测,光学成像系统和衍射元件检测,纳米器件和MEMS检测,科研和高等教学仪器等众多领域。平面类(平面平晶、窗口玻璃、光学平面玻璃、金属平面、陶瓷平面等)光滑表面面形测量、一次测量后可同时显示多区域测量结果、光学平行度和材料均匀性的测量,90°直角棱镜和角锥测量;球面类(凸面、凹面、不同F数)光滑表面面形测量;柱面类(凸面、凹面、不同F数)光滑表面面形测量;非球面类(凸面、凹面)光滑表面面形测量;光学组件和系统透射波前精度测量、光学系统的装调和校准等。应用领域:计量领域(平面平晶检测)。江苏平面平晶检测激光干涉仪性价比
材料包括各类玻璃、塑料、陶瓷等,内容包括表面光圈、局部形变的测量、球面曲率半径的测量等。苏州角锥角度测量激光干涉仪原理
自十九世纪以来,干涉测量技术一直是精密测量领域中的重要技术之一,在精密工业生产加工以及基础科学测量有着广泛应用。近几十年来,随着空间科学应用的发展需求,例如空间引力波探测,高精度星间激光测干涉测量技术得到***重视。高精度星间激光测距是利用两颗卫星之间的两束或者多束激光进行干涉,通过读取干涉信号的相位信息得到星间距离变化信息。基于高精度星载激光稳频、精密相位测量以及弱光锁相技术、星间激光指向控制等技术,可实现皮米级星间位移测量,对空间科学与技术、基础物理实验等研究领域具有重要价值与应用苏州角锥角度测量激光干涉仪原理
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。