碳化硅反射镜的烧结工艺:SiC陶瓷材料的制备工艺方式主要有:热压烧结工艺、反应烧结工艺、常压烧结工艺和化学气相沉积工艺(CVD)。其中热压烧结工艺由于工艺过程的限制,不适合制备形状复杂的反射镜镜坯。常压烧结工艺烧结过程镜坯的收缩率达到10%~15%,这种工艺对于制备精密尺寸的近净尺寸成型不利。CVD技术制备SiC质反射镜,是将含有硅源(SiCl4)和碳源(CXHY)的气体共同导入反应炉,合成SiC后沉积在基板上。采用该工艺制备的镜体质量较好,但成本也较高,只有在特殊的情况下应用该技术。反应烧结工艺可以制备大尺寸、形状复杂的SiC反射镜镜坯,反射镜,并且反应烧结的制备温度相对较低、烧结时间周期短、镜坯制造成本低,反射镜、烧结完成的结构致密,反射镜,机械综合性能、热特性较优,符合超大口径反射镜的应用要求。投影仪上的平面反射镜表面非常平整光滑,光洁度非常高。反射镜
反射镜的膜分类。金属膜:铝膜金膜银膜。经济实惠,可以在宽波长谱区内使用。可以在所有入射角度下使用。膜有吸收、反射率稍微降低。容易受损(金膜反射膜无保护膜)。用于简单的光学系统、使用低输出激光的光学系统、白光照明系统或成像系统、红外光学系统(金膜反射镜)。宽带多层介质膜:反射率高可以在宽波长谱区使用。膜没有光的吸收。膜较硬不易受损。用于精密光学系统(微弱光或低损失的光学系统)、1W以内的激光光学系统、使用多波长激光的光学系统。激光用多层介质膜:反射率非常高,损失很少。膜没有光的吸收,激光损伤阈值很高。不易受损。波长范围窄,入射角为45°时使用。用于使用激光的光学系统、强激光光学系统兰州屋脊棱镜反射镜光学中平面镜是惟一能成完善像的光学元件。
反射镜在许多应用中还需要考虑其他的一些性质,在激光器技术中需要很高的表面质量。表面平滑度通常用波长表征,例如λ / 10。由于表面缺陷很大程度上是一个随机现象,只能给出其统计学表征。对于小的局部缺陷,常用“划痕和坑”来表征。其中包含划痕的较大长度(十分之一微米)和坑的较大半径(百分之一微米)。当采用高功率激光器时,需要考虑光学损伤阈值,尤其是脉冲激光器,因为其峰值功率很高。通常的家用反射镜为银反射镜。是由金属盘并且其一侧涂覆银涂层得到的。涂层足够厚可以抑制两边光的透射。然而,反射率比100%小,因为银涂层会吸收一部分的光。
由于镀铝反射镜镀铝膜的表面层经过镀铝后,可在大气中生成一层氧化铝膜,铝膜反射镜是采用真空镀膜法,在平面基板表面,镀上一层铝膜而成的全反射镜,在可见光区域反射率可以达到90%以上。镀银反射镜在可见光和红外波段具有大于95%的相对高的反射率,当反射镜倾斜时,反射镜的偏振效应很小。镀银膜镜面膜层与光学玻璃基板之间的附着力差,容易接收硫化物的影响,使用寿命较短。镀金反射镜在红外波段反射率高达98%以上,镀金膜的膜层粘附性差,以铬膜为基底,提高了膜层的附着力。施工过程中应保持反射镜使用环境整洁。
电介质膜反射镜根据使用用途的不同会有差异,目前主要种类有:强激光用电介质反射镜、超带宽电介质膜反射镜和入射角可变激光谱线反射镜。a、强激光用电介质膜反射镜主要适用于高功率,脉冲Nd-YAG激光(或Yb-YLF激光)或准分子激光的光学系统。在YAG激光器中,用作从基波(1064nm)到4次谐波(266nm)的反射镜,也用作ArF(193nm),KrF(248nm)的准分子激光的反射镜。b、超带宽电介质膜反射镜,这类反射镜在紫外谱区、可见光谱区和红外谱区都有着高反射率,即使是在紫外和红外谱区,也比一般金属膜反射镜要高。c、入射角可变激光谱线反射镜,适用于迈克尔逊干涉仪或其他需要在两面反射镜之间反复多次反射的、入射角需要小于45°的光学系统中。当入射角固定时,可用的波长范围较宽,如:TFVM-800,45°入射时,在730~900nm波长范围,其反射率均大于99%。在其他角度入射时可能无法做到分散补偿。贵阳方形反射镜
采用镀膜膜面反射镜,得到的图象亮度高,精确无偏差,画质更清晰,色彩更逼真。反射镜
什么是反射望远镜?用反射镜作物镜的望远镜。反射望远镜光学性能的重要特点是没有色差。其他像差在理论上虽然可以得到消除,但工艺复杂,实用的反射望远镜为了避免像差,视场一般比较小,可以通过像场改正透镜扩大视场。反射镜的材料要求膨胀系数小,应力较小和便于磨制。镜面通常镀铝,在红外区及紫外区都能得到较好的反射率。反射望远镜的镜筒一般比较短,便于支撑。现代高科技反射望远镜还具有镜面自适应光学系统和主动光学系统,可以补偿大气扰动干扰和镜面应力及风力引起的变形抖动。反射镜
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。