汽轮机第6级抽汽管道存在积水,在机组跳闸后饱和水汽化回流到汽缸,冲击转子动叶造成部分围带脱落。检查第6级抽汽管道布置,从低压缸下部经凝汽器引出后水平布置,因前方空间受阻,管道向上弯曲,跨过干扰后再弯回水平布置,形成一个拱形,汽轮机大修设备检修,在拱形上游的水平管段底部原来设计有疏水管,汽轮机大修设备检修,但现场检查发现没有安装。当时6号低加因正常疏水管故障没有投入运行,抽汽阀处于关闭状态,造成该处管段底部存有积水,汽轮机大修设备检修,由于该处管段顶部和底部没有设计温度测点,因而也无法发现内部有积水情况。汽轮机体由旋转部分(转子)和静止部分(静止体或定子)组成。汽轮机大修设备检修
汽轮机中的刚性联轴器结构简单,尺寸小;工作不需要润滑,没有噪声;但是传递振动和轴向位移,对中性要求高。半挠性联轴器是右侧联轴器与主轴锻成一体,而左侧联轴器用热套加双键套装在相对的轴端上。两对轮之间用波形半挠性套筒连接起来,并以配合两螺栓坚固。波形套筒在扭转方向是刚性的,在变曲方向刚是挠性的。主要用于汽轮机-发电机之间,补偿轴承之间抽真空、温差、充氢引起的标高差,可减少振动的相互干扰,对中要求低,常用于中等容量机组。汽轮机大修设备检修调速系统不能维持汽轮机的空载运行或甩负荷后机组转速不能维持在超速保护转速以下。
汽轮机疏水阀不能简单地由机组负荷来控制,对不同地点的疏水应分不同工况进行控制。建议疏水阀只在冷态启动时按负荷来控制,其它工况下不按负荷控制,内部无积水时不需要开启; 汽缸的疏水阀在确认排放口无压力后才能打开; 对于能检测到疏水口温度和压力的地方,可以按温度是否低于相应蒸汽压力下饱和温度+10℃,来控制疏水阀开关。监测管道积水常用的方法有: 在管道低点设置疏水罐,通过液位开关或筒壁上下温度来监测; 在管道顶部和底部布置温度测点,根据温差来监测。
近些年来汽轮机设备汽缸上下温差高、抽汽管道存在积水、汽轮机跳闸后转速失控、疏水口周围金属出现裂纹或发生泄漏等现象时有发生,有必要对汽轮机疏水系统存在的问题进行梳理和分析,研究相应对策,防止汽轮机设备损坏。汽轮机疏水系统的设计原则是: 要求汽轮机在启动、稳定运行、变负荷、故障、停机、热态备用等各种工况下,能够及时排放汽轮机设备及相关管道内部的积水,并防止其进水或者冷蒸汽回流。通常在汽轮机冷态启动( 暖机、暖管) 时或者管道隔离状态下,其内部蒸汽会冷凝而出现积水; 当管道中蒸汽减温器工作不正常时,会给管道带来积水。主再蒸汽管道若有积水,会带入汽轮机。可按照蒸汽初压、排列方式等进行分类。
在现代工业的连续生产中,由于介质腐蚀、冲刷、温度、压力、震动等因素的影响,设备、管道、阀门及容器等都不可避免的出现泄露问题。带压堵漏技术是在不影响正常生产的前提下,带温、带压修复渗漏部位,达到重新密封的一种特殊技术手段。由于这种技术有事是在工艺介质、压力、流量均不降低,且有介质外泄的情况下实施的,因此它与传统的停车堵漏具有本质的区别,其经济价值更加明显。汽轮机的油动机等液压设备,在工作过程中承受较大的压力及振动力。由于设备材质为铸铁,铸造过程中难免存在不易发现的铸造缺陷,加上长时间满负荷运行,在壳体的薄弱部位极容易出现砂眼渗漏或裂纹渗漏,使设备无法正常工作。用于冶金工业、化学工业、舰船动力装置中。天津抽气背压式汽轮机
汽缸内安装着喷嘴室、隔板、隔板套等零部件。汽轮机大修设备检修
众所周知,凝汽式汽轮机常用的排汽压力为5~10千帕(一个标准大气压是101325帕斯卡)。船用汽轮机组为了减轻重量,减小尺寸,常用0.006~0.01兆帕的排汽压力。提高汽轮机热效率的措施还有,采用回热循环、采用再热循环、采用供热式汽轮机等。提高汽轮机的热效率,对节约能源有着重大的意义。现代核电站汽轮机的数量正在快速增加,因此研究适用于不同反应堆型的、性能良好的汽轮机具有特别重要的意义。在汽轮机设计、制造和运行过程中,采用新的理论和技术,以改善汽轮机的性能,也是未来汽轮机研究的一个重要内容。汽轮机大修设备检修
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。