面向多场景的储能精益化配置与精细化调控关键技术及应用项目主要应用于电网侧储能电站、用户侧分布式储能等多类型储能的系统规划、复合功能运行、精细化管控和智能化运维。在电网侧,国网浙江电力在浙江长兴县雉城储能电站应用了项目的智慧能量管理系统,峰谷差比较大减少约,满功率响应调节精度达到。储能电站功率指令的精细化分配减少了储能电站的充放电切换次数,提升了储能电站的整体使用寿命。在用户侧,国网浙江电力双创中心在综合能源工程示范项目中应用了储能价值评估与优化配置系统,部署了智慧能源管控系统,取得了良好的应用效果。2019年1月~2021年12月,综合能源工程示范项目根据实际需求组合储能功能,累计实现削峰填谷转移负荷近100万千瓦时,结合需量管理功能累计获得收益约,在提高电能质量的同时,很大程度降低供电成本。此外,该项目还优化储能电池的动作频率和放电深度,降低储能电池的动作损耗,实现储能容量衰减每年延缓2%,延长了储能电池的使用寿命。目前,天津公益储能系统,项目成果已在浙江、新疆、湖南、江苏、山西等地得到推广应用,天津公益储能系统,天津公益储能系统,保障了储能高效运行,延长了储能电池的使用寿命,提升了储能电站的经济效益。 储能电站(系统)在电网中应用目的主要考虑负荷调节、配合新能源接入、提高电能质量、孤网运行、削峰填谷。天津公益储能系统
新能源侧储能的主要收益方式是提高上网电量、降低发电计划偏差、提供辅助服务。提高上网电量,主要通过峰谷平移、减缓输电阻塞发挥作用。新能源电站“弃风弃光”原因是“用不完、送不走”,即当地负荷小、源荷无法平衡,同时外送通道资源不足。配置储能后,一是在发电高峰时段或负荷低谷期时“充电”、在发电低谷时段或负荷高峰期“放电”,通过“能量搬移”手段起到“峰谷平移”的作用,减少新能源电站“弃风弃光”损失;二是当输送能量大于上级电网容量时充电存储能量,输送能量减小时放电,因此通过储能可有效减缓输电堵塞。天津标准储能系统储能成本的下降不能依赖单一技术路线。
id表示并网点总的d轴实际反馈电流,iq表示并网点总的q轴实际反馈电流。5)并联/并网控制柜根据从用户或能量管理系统调度指令,得到并网点有功功率和无功功率参考值pref、qref,与瞬时有功功率p和无功功率q比较后得到差值δp和δq,对δp和δq进行比例积分运算得到d轴分量参考值idref和q轴分量参考值iqref。一般的,通过dq分量限幅模块进对参考电流进行限幅控制。6)并联/网控制柜通讯模块把d轴分量参考值idref和q轴分量参考值iqref广播发送给各储能变流器。7)第x个储能变流器接收到参考电流idref、iqref,与采集自身出口电感电流iax、ibx、icx,进行dq变换得到的两相同步旋转坐标系下反馈电流idx、iqx比较后得到差值δidx、δiqx,对δidx、δiqx进行比例积分运算得到输出脉宽调制系数pmdx、pmqx。8)第x个储能变流器根据脉宽调制系数pmdx、pmqx及pwm算法生成驱动信号,实现开关管导通和关断控制。9)第x个储能变流器根据脉宽调制系数pmdx、pmqx及pwm算法生成驱动信号,实现开关管导通和关断控制。10)并联的各储能变流器自动均分负载。当并联数量发生变化时,由于功率外环控制输出的电流参考id-ref、id-ref是由并网点电压和总电流进行瞬时功率与参考功率进行pi运算得到。
虚拟电厂)为架构的模式。当新能源+储能的度电成本低于传统的化石能源时,微电网群和集中式新能源+储能的这种模式将会爆发式增长。而作为能源**的关键技术,微电网及微电网群控制EMS系统、储能系统BMS、PCS系统将是能源**成功与否的关键。关键技术1——项目顶层设计大规模的储能系统有着不同的应用场景和商业模式,有的储能系统是单一的电网调峰,有的是调峰、调频和调压等多重应用场景的结合。根据不同的项目,大规模储能系统功率的配置和电池的配置、选型也是完全不同的,这个系统目标函数要系统安全、稳定、可靠,要有经济性。大功率储能系统的顶层设计是非常重要的,涉及到储能功率配置、储能Pack成组和储能容量配置等诸多因素。一个光伏电站平均的储能时间是10分钟还是20分钟、还是50分钟,这个电网是有要求的。比如现在青海要求光伏、风电有10%的储能容量的配比,不同的地方配比是不一样的。另外充放电电流大小、BMS均衡电流大小、调峰容量需求以及一次、二次调频所需时间,这些约束条件和**后要达到的目标之间要确保整个流程设计是闭环的。关键技术2——储能系统集成根据储能系统的顶层规划。储能系统、微型电网系统投资很大,蓄电池的成本相当高。
IRENA的2018年全球能源转型报告指出,按照目前的发展模式,全球电力需求到2050年相比2012年将会翻倍。目前,发电导致的碳排放约占能源相关的碳排放的40%。因此,发电系统“去碳化”对控制全球变暖在2°C以内至关重要。为了达到《巴黎协定》的目标,到2050年,电力行业的碳排放相比于2012年需要降低至少85%,这就需要可再生能源在发电中的比例达到63%。然而,可再生能源发电功率不稳定的特性,使其覆盖基础负荷的能力较差,且需要其他大功率的发电设备在可再生能源无法产生电力时予以补充。储能技术能够有效的降低对发电功率的要求。除了电池储能,氢储能技术,也是另外一种极具竞争力的发展方向。所谓氢储能技术,即:将多余的电力可用于制造可无限期储存的氢气,然后在常规燃气发电厂中燃烧气体发电,或用于给家庭供热。转换成氢气的好处是,电解制氢效率很高,目前能达到80%的电能转化率,此外,氢能够在利用方面提供多种解决方案,且能够满足大规模、长时间储能的需要。目前,氢储能技术如果细分的话,则可以分为以下两种:1.电转电技术(Power-to-power,PtP):指将电能转化成其他形式的能量储存起来,需要时再重新转化成电能的过程。2.电转气技术(Power-to-gas。在发电侧,储能可单独或与风光电站共建,起到电力调峰、辅助动态运行、系统调频、可再生能源并网等作用。天津标准储能系统
储能市场巨大,随技术进步,储能方式也会产生变化,未来代表性的储能技术包括超导储能和超级电容器储能。天津公益储能系统
进行运行方式的转换。并网控制柜根据ems发送的控制参量,进行并网/联点外环功率/电压控制,并生成各pcs的内环瞬时电流控制参量,发送给储能变流器pcs1~n。储能变流器pcs1~n**进行内环瞬时电流控制,类似电流源,有效控制。本实施方式中,ems是能量管理**,并网/联控制柜运行状态转换**,同时也是功率/电压、电流外环控制**,并联pcs则是**执行部分,并进行瞬时电流控制。在一些实施方式中,并网/联控制柜可以进行自主能量管理,取代能量管理系统职能,此时可取消能量管理系统(ems)。实施例二在一个或多个实施例中,公开了一种储能系统的控制方法,参照图6,并网或并联控制柜工作在并网模式时,具体包括如下过程:1)采集并网点三相电压和三相电流;2)对并网点三相电压进行锁相,得到电网运行频率;3)dq变换模块将采集的三相电压和三相电流进行αβ/dq变换,得到两相同步旋转坐标系下实际总反馈电压和反馈电流;4)瞬时功率变换模块根据得到的两相同步旋转坐标系下实际总反馈电压和反馈电流按下式确定并网点的瞬时有功功率和瞬时无功功率;其中,p和q分别表示并网点总的瞬时有功功率和瞬时无功功率,ud表示并网点总的d轴实际反馈电压,uq表示并网点总的q轴实际反馈电压。天津公益储能系统
河北鑫动力新能源科技有限公司成立于技术河北保定,注资3千万,专注于锂电池组研发、设计、生产及销售,是国内专业的锂电池组系统解决方案及产品提供商。公司具有雄厚的技术力量、生产工艺、精良的生产设备、先进的检测仪器、完善的检测手段,自主研发和生产锂电池产品的能力处于良好地位。我公司本着“诚信为本,实事求是,精于研发,勇于创新”的经营理念,采用合理的生产管理机制、完善的硬件基础设施、专业的技术研发团队、完善的售后服务保障,、高标准、高水平的产品。我公司一直坚持科技创新,重视自主知识产权的开发,在所有环节严格执行ISO标准,并与河北大学等重点院校深度合作,完成资金和技术整合。河北鑫动力新能源科技有限公司专业生产储能电池组、动力电池组,广泛应用于小型太阳能电站、UPS储备电源、电动交通工具等领域。产品以其高容量、高安全性、高一致性、超长的循环使用寿命等优点深受广大客户的好评。树**品牌,争做行业前列,将鑫动力打造成世界**企业,在前进的道路上,鑫动力将坚定不移的用实际行动履行“让世界绽放光彩”的神圣使命。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。