>> 当前位置:首页 - 产品 - 山东协作机器人 欢迎咨询 位姿科技供应

山东协作机器人 欢迎咨询 位姿科技供应

信息介绍 / Information introduction

    冠状动脉疾病是常见的心脏病类型,山东协作机器人。在美国,约有1820万成年人患有冠状动脉疾病。CT和MRI是无创心脏成像和评估冠状动脉疾病的既定方法。CT对于冠状动脉解剖的高分辨率图像特别有用,而心脏MRI可以在不使患者暴露于电离辐射的情况下提供有关心肌血供的信息。尽管具有互补的优势,但CT和MRI的检查结果通常会分别进行分析,从而限制了充分利用这两种方法的优势的能力,山东协作机器人。研究主要作者Jochenvon说:“根据这种经验,提出了将疾病的不同病理方面的信息融合在一起并将其组合到单个3D图像中的想法,该图像可以以非常快速但高度准确的方式进行解释。”Spiczak医学博士,瑞士苏黎世大学医院诊断与介入放射学研究所放射学家和计算机科学家。结合CT和MRI的现有方法存在局限性,因为它们关注冠状动脉疾病许多方面的有限子集。vonSpiczakak博士及其同事通过开发一种方法来克服这些限制,山东协作机器人,该方法可以在一幅3D图像中描绘出CT和心脏MRI的所有可用信息。他们将他们的方法与17位因怀疑或已知冠状动脉疾病进行了心脏CT和心脏MRI检查的患者的常规2D读数进行了比较。常规的2D图像读取导致8例结果不确定。新方法帮助解决了其中六个案例的不同发现。


山西协作机器人,可以联系位姿科技(上海)有限公司;山东协作机器人

光声图像引导机器人辅助颅底手术

我们研究使用光声(PA)成像来检测人体的关键结构,如颈动脉,在机器人辅助鼻内经蝶窦手术中,这些结构可能位于被钻骨头的后面。在该系统中,激光器(通过光纤)安装在钻头上,而二维超声探头则放置在颅骨上的其他位置。在相对患者参考系中对钻头和超声探针都要会进行追踪。与传统的B模式超声相比,光声成像具有两个优点:1.激光能够穿透骨骼的薄层;2.光声成像图像显示激光路径中的目标。因此,激光可以用于(非侵入性)延伸钻探轴线,从而可靠地检测可能驻留在钻探路径中的关键结构。然而,这种设置会产生一个挑战性很大的问题,即对准。因为必须放置超声探头,以使其图像平面与目标解剖结构附近的激光线相交(根据术前图像估算)。本文报告了为协助完成此任务而开发的导航系统,以及幻象实验的结果,这些幻象实验表明可以检测到关键结构,相对于钻头的精度约为1mm。 黄浦区协作机器人仪器河北协作机器人,可以咨询位姿科技(上海)有限公司;

正确定位骨科植入物的重要性在

这篇文章中,我想强调在手术过程中正确定位骨科植入物的重要性。以髋关节为例,因为它是我熟悉的。简化的髋关节生物力学髋关节中的旋转中心和杠杆臂髋关节是经典的球窝关节,股骨头在骨盆的杯状髋臼中移动。髋部的几何形状允许以股骨头的中心为旋转中心在所有方向上进行旋转运动。这些运动是由于髋部肌肉作用于骨盆和股骨不同点的力引起的。有22块肌肉作用在髋关节上,不仅有助于稳定,而且还提供髋关节运动所需的力。由这些肌肉引起的所有力或力矩取决于髋部和/或杠杆臂的旋转中心的位置。图1:力矩,杠杆臂摘要:如果旋转中心和股骨杠杆臂不对称,则双髋肌肉的作用将不相似。髋关节的重要角度髋关节的几个角度很重要,以确保稳定性和运动范围。在骨盆侧,髋臼的方向因人而异。角度位置包括髋臼(或杯)的前倾角和倾斜角(外展角)。不同的研究侧重于定义前倾角和倾斜角的值,其中脱位风险小。外科医生将尝试通过尊重这些角度来植入杯子。图2:髋臼角度在股骨一侧,颈部相对于膝盖有一个角度。所谓的股骨版本,是有些人走路时脚趾内翻或外翻的原因之一。股骨前倾是股骨的自然旋转。颈部与膝盖(后髁轴)成15°角。由于附着在股骨上的肌肉。

 

    视觉服务视觉伺服主要是指利用视觉数据来控制机器人的运动。视觉伺服可以被描述为一种闭环控制算法,其误差是根据视觉测量来定义的。该控制方案的主要目标是减少误差并驱动机器人关节角度作为位姿(方向和位置)误差的函数。这种类型的控制回路经常应用于需要物体检测、伺服、对齐和抓取的物体操纵任务。以程图展示了视觉伺服系统的基本构建块:很容易理解,减少这个控制回路(上图中的光学系统块)的处理时间将使机器人移动得更快。实际上,它转化为光学系统的延迟。该指标主要基于成像传感器的读出速度、图像处理时间以及与视觉伺服控制回路系统通信通道的实时能力。想象一下,您的机器人以1m/s的速度线性移动,而您的系统的延迟为33ms。当控制回路接收到位姿信息时,机器人实际上已经移动了33毫米。但是,如果系统的延迟为4ms,则移动将为4mm。选择系统不是基于其速度而是基于其延迟。机器人辅助手术有两个系列的机器人辅助手术应用。一种更类似于远程操作,外科医生自己进行视觉伺服,例如IntuitiveSurgical的达芬奇系统。我们现在将关注另一种类型的机器人,这些机器人需要实时自动补偿解剖结构的运动。在典型的骨科手术中。

  贵州协作机器人,可以联系位姿科技(上海)有限公司;

  相对于设备的工作空间中的测量位置),基准技术(例如质量和制造可重复性,基准相对于相机的角度响应),基准点的固定(例如,插入的可重复性,基准点和标记之间的机械松弛),标记的制造(例如制造的可重复性或几何校准的质量),标记的相对姿势,标记的速度和整体延迟,缺少局部遮挡,与术前现场登记相关的残留错误,术前测量/成像仪的准确性,外科医生指出解剖学界标不准确。特别是对于光学追踪系统,固有精度高度取决于:相机的分辨率,基线(摄像机之间的距离),坚固性(机械,热和老化稳定性),在工作空间中基准点的位置和角度,图像处理算法的质量。FusionTrack250的校准和准确性先进的光学系统已在工厂进行了校准。该过程包括在20°C下在整个测量体积中将单个基准步进移动2000个点以上。由于使用坐标测量机(CMM)精确测量了点的位置,因此每个设备的校准参数都经过了精细调整。通常,CMM校准的精度比棋盘格校准或其他标准的原位处理精度高十倍。下图说明了FusionTrack250的典型固有精度。实际上,当执行在,期望的均方根(RMS)精度为90µm。光学系统的典型精度数字请注意,工作容积内的误差不是各向同性的([X,Y]和Z的误差有所不同)。在整个工作空间中。广西协作机器人,可以咨询位姿科技(上海)有限公司;上海的协作机器人制作公司

新疆协作机器人,可以咨询位姿科技(上海)有限公司;山东协作机器人

    如何在PST光学定位系统中训练追踪目标物?当追踪目标物粘贴marker之后,PST光学定位系统需要对其进行识别。在主窗口中按“Newtargetmodel”(新目标模型)选项即可选择训练页面(请见下图)。训练是“教”系统识别新追踪目标物的过程,即在PST摄像头前面(追踪范围内)缓慢旋转物体,系统根据marker点的位置关系对其进行识别并建模,然后该模型即可用于追踪交互。训练步骤:1.在目标物上添加四个或多个标记点。将目标物放置在PST工作空间中(无遮挡),该空间里所有其它追踪目标物和反光材料,因为在训练过程中如果有多个物体可能会造成目标物识别错误。该过程可以训练多包含多达100个标记点的单个目标物。2.点击“开始”按钮,下图显示为一个示例训练的片段。灰色点表示被自身遮挡的标记点。3.缓慢而平稳地移动并旋转目标物,以便将所有标记点显示给系统。确保在训练过程中始终保持三个或更多标记点可见。如果没有足够的标记点可见,训练过程将中止,并显示错误对话框。在这种情况下,请关闭错误对话框并重新开始训练操作。如果问题仍然存在,请检查目标物各个角度是否都有足够的标记点可见。当显示的追踪目标物标记点数量和物体上的实际标记点数量一致时。 山东协作机器人

位姿科技(上海)有限公司位于上海市奉贤区星火开发区莲塘路251号8幢。公司自成立以来,以质量为发展,让匠心弥散在每个细节,公司旗下光学定位,光学导航,双目红外光学,光学追踪深受客户的喜爱。公司从事数码、电脑多年,有着创新的设计、强大的技术,还有一批**的专业化的队伍,确保为客户提供良好的产品及服务。位姿科技秉承“客户为尊、服务为荣、创意为先、技术为实”的经营理念,全力打造公司的重点竞争力。

免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。

查看全部介绍
推荐产品  / Recommended Products