>> 当前位置:首页 - 产品 - 广东厌氧氨氧化菌 真诚推荐 山东浩妙生物工程供应

广东厌氧氨氧化菌 真诚推荐 山东浩妙生物工程供应

信息介绍 / Information introduction

厌氧氨氧化是目前的主流的应用的工艺流程。Anammox是在无氧条件下,广东厌氧氨氧化菌,以氨为电子供体、亚硝酸为电子受体,产生氮气和硝酸的生物反应。Anammox包括两个过程:一是分解(产能)代谢,广东厌氧氨氧化菌,广东厌氧氨氧化菌,即以氨为电子供体,亚硝酸盐为电子受体,两者以1:1的比例反应生成氮气,并把产生的能量以ATP的形式储存起来;二是合成代谢,即以亚硝酸盐为电子受体提供还原力,利用碳源二氧化碳以及分解代谢产生的ATP合成细胞物质,并在这一过程中产生硝酸盐。厌氧氨氧化菌 (Anaerobic ammonia oxidation bacteria, AnAOB) 是厌氧氨氧化的实施者。厌氧氨氧化菌的富集与脱氮效能。广东厌氧氨氧化菌

厌氧氨氧化菌富集培养技术关键与影响因素。与传统的硝化一反硝化脱氮工艺相比,厌氧氨氧化工艺在高氨氮污水脱氮方面具有明显的优势。但由于厌氧氨氧化菌倍增时间长.对环境条件敏感,导致厌氧氨氧化工艺的启动时间较长,限制了该工艺的推广应用。回顾了近年来厌氧氨氧化菌富集培养技术的研究进展。分析了进水基质、接种污泥类型与反应器类型对厌氧氨氧化启动过程的影响.对富集厌氧氨氧化菌的技术关键进行了总结。该项研究对厌氧氨氧化工艺的工程应用具有技术指导作用。上海造纸厌氧氨氧化菌检测厌氧氨氧化菌的纯化分离鉴定如何进行?

厌氧氨氧化菌普遍普遍分布在各种海洋环境,淡水生态系统和废水处理系统中。目前已发现的厌氧氨氧化菌均属于浮霉状菌目的厌氧氨氧化菌科。厌氧氨氧化菌更实际的应用在于污水的处理。传统方法是使用硝化菌将氨转换为亚硝酸盐和硝酸盐,然后反硝化菌再将其还原成氨气。硝化过程需要巨量的氧气,因此一些机器就要耗费大量的电来为这些污泥进行曝气。除此之外反硝化过程还需要外碳源,不仅昂贵对环境也不好。厌氧氨氧化菌利用氮作为能源,既不需要曝气,又不需要昂贵的甲醇,因此该工艺非常环保。总之,与传统的工艺相比,厌氧氨氧化工艺会减少运行费并节省空间面积。

厌氧氨氧化菌的氧化工艺。Mulder等在厌氧流化床中发现了厌氧氨氧化。后来,VandeGraaf等和Bock等发现了以亚硝酸盐为电子受体的厌氧氨氧化过程。郑平等研究了厌氧氨氧化菌混培物的动力学特性[141。FuxChristian等进行中试试验研究,首先在连续搅拌反应器中完成氨氧化,58%的NH4-N转化为NO2;在SBR中完成厌氧氨氧化,除N速率为2.4kg/(m·d),除N率达90%;Sliekers等在气提式反应器中发现除N速率达8.9kg/(m·d),这个除N速率是实验室所获得的除N速率的20倍。Dapena-Mora等研究中发现在气提式反应器中N负荷率为2.0g/(L·d),大比厌氧氨氧化活性(MSAA)为0.9g/(g·d);在SBR中N负荷率为0.75g/(L·d),MSAA为0.4g/(g·d),除N02率达99%。厌氧氨氧化菌的联合工艺。Jetten等利用SHARON-ANAMMOX联合工艺对污泥消化出水进行了研究。SHARON反应器总氮负荷为0.8kg/(m·d),转化53%的总氮(39%NO2,14%N03),用SHARON反应器的出水作为厌氧氨氧化流化床反应器的进水,在限制N02的厌氧氨氧化反应器中N02全部被除去,试验中NH4-N的去除率达83%。VanDongen等应用SHARON-ANAMMOX联合工艺在工厂中长时间稳定运行。科学家们在黑海中发现了厌氧氨氧化菌,能高效地消耗从黑海表层区域进入到下层厌氧区的无机氮。

如今,水体富营养化日益严重,使城市水环境恶化,甚至造成饮用水水源供应中断,严重影响了工业生产与居民的日常生活,造成了巨大的直接和间接经济损失。污水中氮磷的排放是引起水体富营养化的重要原因,因此为了控制水体富营养化而兴建了大量的污水处理厂。现有污水处理厂属于能耗大户,在能源危机不断凸显的背景下,如何在实现高效脱氮的同时又能降低水处理能耗,降低处理费用,这对于污水处理的可持续发展有着重要意义。现有污水脱氮技术需要利用有机物作为反硝化碳源才能达到污水总氮去除的目的,因此污水中的大部分有机物不能用于产出甲烷,厌氧氨氧化菌的发现为污水自养脱氮提供了可能,因为厌氧氨氧化菌可以利用亚硝酸盐氧化氨氮生成氮气,而无需有机物作为碳源。厌氧氨氧化菌可以不用反应器培养吗?山东厌氧氨氧化菌品牌

厌氧氨氧化细菌的培养及影响因素。广东厌氧氨氧化菌

厌氧氨氧化菌的可能反应机理:Van de Graaf等用N作为示踪元素,研究了厌氧氨氧化代谢途径。他们根据N2H4转化为N2的过程给N02还原为NH20H的反应提供等量电子的假设。提出了两种可能的机理。其一,一个由膜包围的酶复合体将氨和NH2OH转化为N2H4,N2H4则在外周胞质内氧化为氮气,产生的电子通过内部电子转移,在包含酶复合体(此酶复合体也负责N2H4氧化)的细胞质中将N02还原为NH2OH。其二,氨和NH2OH在细胞质内被一由膜包围的酶复合体转化为N2H4,N2H4在外周胞质内转化为N2,与产生的电子通过电子传输链传递给细胞质内的亚硝酸盐还原酶将N02还原为NH2OH。广东厌氧氨氧化菌

免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。

查看全部介绍
推荐产品  / Recommended Products