BMS电池管理系统实现以下几个功能:(1)电池端电压的测量;(2)单体电池间的能量均衡:即为单体电池均衡充电,使电池组中各个电池都达到均衡一致的状态。均衡技术是世界正在致力研究与开发的一项电池能量管理系统的关键技术,河北BMS电池管理系统架构。(3)电池组总电压测量;(4)电池组总电流测量;(5)SOC计算:准确估测动力电池组的荷电状态 (State of Charge,即SOC),即电池剩余电量,保证SOC维持在合理的范围内,防止由于过充电或过放电对电池的损伤;(6)动态监测动力电池组的工作状态:在电池充放电过程中,实时采集电池组中的每块电池的端电压和温度、充放电电流及电池包总电压,防止电池发生过充电或过放电现象。(7)实时数据显示;(8)数据记录及分析:同时挑选出有问题的电池,河北BMS电池管理系统架构,保持整组电池运行的可靠性和高效性,河北BMS电池管理系统架构。(9)通讯组网功能。新能源汽车BMS行业产业链中游为BMS设计生产制造企业。河北BMS电池管理系统架构
电池管理系统(BMS)为一套保护动力电池使用安全的控制系统,时刻监控电池的使用状态,通过必要措施缓解电池组的不一致性,为新能源车辆的使用安全提供保障。作为国内品质好的动力系统供应商,在控制系统开发方面拥有雄厚的实力和丰富的经验,可以为客户在电池管理系统开发方面提供品质好的工程和配套服务。BMS 硬件的拓扑结构分为集中式和分布式两种类型。集中式是将电池管理系统的所有功能集中在一个控制器里面,比较合适电池包容量比较小、模组及电池包型式比较固定的场合,可以明显的降低系统成本。专注BMS电池管理控制系统企业BMS为新能源车辆的使用安全提供保障。
目前,电池电压的大部分采集精度只达到5 mV。目前,电池的电压和温度采样已形成芯片产业化,表1比较了大多数BMS所用芯片的性能。包括电池状态包括SOH(健康状态估计)、SOS(安全状态估计)、SOF(功能状态估计)及SOE(可用能量状态估计)。这些功能是期望BMS具备的,但实际应用中,出于客户要求、车型要求以及成本等等的考虑,实际设计到系统中的可能只是其中的几个。电池状态包括电池温度、SOC(荷电状态估计)、SOH(健康状态估计)、SOS(安全状态估计)、SOF(功能状态估计)及SOE(可用能量状态估计)。
信号的采样频率与同步对数据实时分析和处理有影响。设计BMS时,需要对信号的采样频率和同步精度提出要求。但目前部分BMS设计过程中,对信号采样频率和同步没有明确要求。电池系统信号有多种,同时电池管理系统一般为分布式,如果电流的采样与单片电压采样分别在不同的电路板上;信号采集过程中,不同控制子板信号会存在同步问题,会对内阻的实时监测算法产生影响。同一单片电压采集子板,一般采用巡检方法,单体电压之间也会存在同步问题,影响不一致性分析。BMS由各类传感器、执行器、控制器以及信号线等组成。
电池安全控制与报警。包括热系统控制、高压电安全控制。BMS诊断到故障后,通过网络通知整车控制器,并要求整车控制器进行有效处理(超过一定阈值时BMS也可以切断主回路电源),以防止高温、低温、过充、过放、过流、漏电等对电池和人身的损害。充电控制。BMS中具有一个充电管理模块,它能够根据电池的特性、温度高低以及充电机的功率等级,控制充电机给电池进行安全充电。电磁兼容。由于电动车使用环境恶劣,要求BMS具有好的抗电磁干扰能力,同时要求BMS对外辐射小。模块化电池管理系统细分市场在2019年占总份额的三分之二以上。专注BMS电池管理控制系统企业
电池短路目前电池安全领域的国际难题。河北BMS电池管理系统架构
电动汽车用锂离子电池容量大、串并联节数多,系统复杂,加之安全性、耐久性、动力性等性能要求高、实现难度大,因此成为影响电动汽车推广普及的瓶颈。锂离子电池安全工作区域受到温度、电压窗口限制,超过该窗口的范围,电池性能就会加速衰减,甚至发生安全问题。温度对锂电池性能尤其安全性具有决定性的影响,根据电极材料类型的不同,锂电池工作温度温度过高时,会给电池的寿命造成不利影响。换句话说,当温度高至一定程度,则可能造成安全问题。河北BMS电池管理系统架构
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。