众所周知,在离开被测目标3λ~5λ(λ为工作波长)距离上测量该区域电磁场的技术称为技术。如果被测目标是器,则称为辐射近场测量;若被测目标是体,则称为散射近场测量;对测得散射体的散射近场信息进行反演或逆推就能得到目标的像函数,这就是目标近场成像。但是,截止目前为止,关于辐射,深圳消费电子近场辐射、散射近场测量以及溶为一体的综述性文章还未见到公开的报导,这对从事这方面研究的学者无疑是一种遗憾,深圳消费电子近场辐射。为使同行们能全部地了解该技术的发展动态,深圳消费电子近场辐射,该文概述了近几十年来关于辐射、散射近场测量及近场成像技术前人所做的工作及其新进展,并指出了未来研究的主要方向。根据天线的种类,某一种场会成为主导。深圳消费电子近场辐射
industryTemplate深圳多媒体近场辐射抑制方式在该区域中,电抗性储能场占支配地位,该区域的界限通常取为距天线口径表面λ/2π处。
电磁兼容性(ElectromagneticCompatibility,简称EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值,即电磁干扰(ElectromagneticInterference简称EMI);另一方面是指器件对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性(ElectroMagneticSusceptibility,简称EMS)。电磁干扰(ElectromagneticInterference简称EMI)又分为传导干扰和辐射干扰两种。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络,在高速PCB及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其他系统或本系统内其他子系统的正常工作。
辐射近场测量的研究:为了反映脉冲工作状态和消除环境及其他因素对测量数据的影响,时域测量是一个良好的解决此类问题的途径,但目前处于研究阶段。辐射近场扫频测量的研究:就一般情况而言,天线都在一个频带内工作,因此,各项电指标都是频率的函数,为了快速获得各个频率点的电指标,就需要进行扫频测量。扫频测量的理论与点频的理论完全一样,只是在探头扫描时,收发测量系统作扫频测量。近场测量对天线口径场诊断的精度和速度:近场测量对常规阵列天线口径场的诊断有较好的诊断精度,但对于很低副瓣天线阵列而言,诊断精度和速度还需要进一步研究。天线应位于正弦波左侧起始的位置。
辐射近场测量的基本理论虽然已经成熟,且在实用中也取得了较多的研究成果,但对以下问题还应进行进一步的探讨研究:在前述的理论中,所有的理论公式都是在忽略多次散射耦合条件下而得出的,这些公式对常规天线的测量有一定的精度,但对低副瓣或很低副瓣天线测量就必需考虑这些因素,因此,需要建立严格的耦合方程。球面辐射近场测量能够计算除球心以外天线任意面上任意点的辐射场,但测量及计算时间都较长。柱面辐射近场测量能够计算天线全部面的辐射方向图,但在θ=-90°或90°时,柱面波展开式中汉克尔函数已无意义,所以,柱面辐射近场测量适用于天线方向图为扇形波束天线的测量。辐射近场区展示了典型的半波偶极子天线是如何产生电场和磁场的。深圳消费电子近场辐射
实际上电场和磁场互相产生,这样的“单独”波就是无线电波。深圳消费电子近场辐射
低副瓣或很低副瓣天线的测量,天线方向图副瓣电平在-28~-35dB之间的天线称为低副瓣天线;副瓣电平小于-40dB的天线称为很低副瓣天线。对它们的测量要用到“零探头”技术,据文献报导,副瓣电平在-40dB以上时,测量精度为±3dB,副瓣电平为-55dB时,测量精度为±5dB。天线口径场分布诊断是通过测量天线近区场的分布逆推出天线口径场分布,从而判断出口径场畸变处所对应的辐射单元,这就是天线口径分布诊断的基本原理。该方法对具有一维圆对称天线口径分布的分析是可靠的,尤其对相控阵天线的分析与测量已有了充分的可信度。深圳消费电子近场辐射
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。