>> 当前位置:首页 - 产品 - 安徽三桥驱动器代理商 推荐咨询 上海持承自动化设备供应

安徽三桥驱动器代理商 推荐咨询 上海持承自动化设备供应

信息介绍 / Information introduction

伺服驱动器内部结构:

伺服驱动器内部结构由电源电路、继电器板电路、主控板电路、驱动板电路及功率变换电路组成。电源电路作用,将外部输入的直流电转换为大小不同的直流电输出,为后续的继电器板、驱动板、功率变换电路提供直流电源。继电器板作用,提供直流电完成控制信号、检测信号传递。

机电一体化的伺服控制系统的结构,类型繁多,但从自动控制理论的角度来分析,伺服控制系统一般包括控制器,被控对象,执行环节,检测环节,比较环节等五部分。

比较环节

比较环节是将输入的指令信号与系统的反馈信号进行比较,以获得输出与输入间的偏差信号的环节,通常由专门的电路或计算机来实现。

控制器

控制器通常是计算机或PID控制电路,其主要任务是对比较元件输出的偏差信号进行变换处理,以控制执行元件按要求动作。

执行环节

执行环节的作用是按控制信号的要求,安徽三桥驱动器代理商,安徽三桥驱动器代理商,安徽三桥驱动器代理商,将输入的各种形式的能量转化成机械能,驱动被控对象工作。机电一体化系统中的执行元件一般指各种电机或液压,气动伺服机构等。

被控对象

机械参数量包括位移,速度,加速度,力,和力矩为被控对象。

检测环节

检测环节是指能够对输出进行测量并转换成比较环节所需要的量纲的装置,一般包括传感器和转换电路。

上海持承自动化设备有限公司主营驱动器,如有需要,我们会尽快给您答复!安徽三桥驱动器代理商

功率放大器(驱动放大电路)

步进电动机是几相的,在驱动装置中就有几路驱动放大电路,三相步进电动机,在驱动装置中就有三路驱动电路,每一路连接步进电动机的一相绕组。功率放大器的作用是将环形分配器发出的TTL电平信号放大至几安到十几安的电流送至步进电动机的各绕组。下面主要以高低压切换驱动为例介绍典型的驱动功率放大电路。

当输入信号为低电平时,V1、V2、Vg、Vd均截止,电动机绕组中无电流流过,步进电动机不转动,当输入信号为高电平时,V1、V2、Vd饱和导通,在V2由截止过渡到饱和导通期间,与T一次侧串联的V2集电极回路电流急剧增加,在T的二次侧产生一个感应电压,加到高压功率管Vg的基极上,使Vg导通,80V的高压经过Vg加到电动机绕组上,使电流按La/(Rd+r)的时间常数向电流稳定值Vg/(Rd+r)上升。经过过渡过程后,V2进入稳定状态(饱和导通)后,T一次侧电流达到稳定值,无磁通量变化,T的二次侧感应电压为零,Vg截止。这时12V低压电源经二极管VDd加到绕组La上,维持La中的额定电流。 江苏三桥驱动器上海持承自动化设备有限公司主营驱动器,如需选型资料,保持电话沟通!

故障现象为:一旦启动,步进驱动器外接保险丝即烧毁,设备不能运行。维修人员在检查时,发现一功率管已损坏,但由于没有资料,弄不清该管的作用,以为是功率驱动的前置推动,换上一功率管,通电后,保险再度被烧,换上的管子亦损坏。经专业维修人员检查,初始分析是对的,即保险一再熔断,步进驱动器肯定存在某一不正常的大电流,并检查出一功率管损坏。但对该管的作用没有弄清楚。实际上该管为步进电机电源驱动管,步进电机为高压起动,因而要承受高压大电流。静态检查,发觉脉冲环形分配器的线路中,其电源到地端的阻值很小,但也没有短路。根据线路中的元器件数量及其功耗分析电源到地端的阻值不应如此之小,因此怀疑线路中已有元器件损坏。

采用伺服驱动器—电动机互馈对拖的测试平台

这种测试系统由四部分组成,分别是三相PWM整流器、被测伺服驱动器—电动机系统、负载伺服驱动器—电动机系统及上位机,其中两台电动机通过联轴器互相连接。被测电动机工作于电动状态,负载电动机工作于发电状态。被测伺服驱动器—电动机系统工作于速度闭环状态,用来控制整个测试平台的转速,负载伺服驱动器—电动机系统工作于转矩闭环状态,通过控制负载电动机的电流来改变负载电动机的转矩大小,模拟被测电机的负载变化,这样互馈对拖测试平台可以实现速度和转矩的灵活调节,完成各种试验功能测试。上位机用于监控整个系统的运行,根据试验要求向两台伺服驱动器发出控制指令,同时接收它们的运行数据,并对数据进行保存、分析与显示。

对于这种测试系统,采用高性能的矢量控制方式对被测电动机和负载设备分别进行速度和转矩控制,即可模拟各种负载情况下伺服驱动器的动、静态性能,完成对伺服驱动器的多方位而准确的测试。但由于使用了两套伺服驱动器—电动机系统,所以这种测试系统体积庞大,不能满足便携式的要求,而且系统的测量和控制电路也比较复杂、成本也很高

上海持承自动化设备有限公司主营驱动器,如有合作需求,欢迎咨询!

伺服驱动器维修分主板(又叫CPU板)、驱动板和主回路维修三大块,主板维修**难,除了早期的直流伺服和部分交流伺服驱动器采用模拟电路做主板电路外,绝大部分伺服驱动器采用DSP为主的数字电路做主板控制**电路,所以伺服驱动器的主板集成度非常高,元件很小很密,电路一般有很厚的涂层保护膜,这些对维修工程师的动手能力和判断能力是一个很大的考验,一般维修过程是先通过**等溶剂溶解涂层后再做电路**,DSP元件资料获取成了能否修复主板的关键,如果有完整DSP资料,维修工程师可以大概理清楚该伺服主板的晶振、上电复位流程和各种I/O、A/D、D/A的工作状态,这样在主要方向确认的基础上再分析**电路成功的几率就很高了上海持承自动化设备有限公司主营驱动器,如有产品购买,欢迎留言或来电!江苏三桥驱动器

上海持承自动化设备有限公司主营驱动器,如需产品规格,请加QQ好友!安徽三桥驱动器代理商

手动调整增益参数

调整速度比例增益KVP值。当伺服系统安装完后,必须调整参数,使系统稳定旋转。首先调整速度比例增益KVP值.调整之前必须把积分增益KVI及微分增益KVD调整至零,然后将KVP值渐渐加大;同时观察伺服电机停止时足否产生振荡,并且以手动方式调整KVP参数,观察旋转速度是否明显忽快忽慢.KVP值加大到产生以上现象时,必须将KVP值往回调小,使振荡消除、旋转速度稳定。此时的KVP值即初步确定的参数值。如有必要,经KⅥ和KVD调整后,可再作反复修正以达到理想值。

调整积分增益KⅥ值。将积分增益KVI值渐渐加大,使积分效应渐渐产生。由前述对积分控制的介绍可看出,KVP值配合积分效应增加到临界值后将产生振荡而不稳定,如同KVP值一样,将KVI值往回调小,使振荡消除、旋转速度稳定。此时的KVI值即初步确定的参数值。

调整微分增益KVD值。微分增益主要目的是使速度旋转平稳,降低超调量。因此,将KVD值渐渐加大可改善速度稳定性。    

调整位置比例增益KPP值。如果KPP值调整过大,伺服电机定位时将发生电机定位超调量过大,造成不稳定现象。此时,必须调小KPP值,降低超调量及避开不稳定区;但也不能调整太小,使定位效率降低。因此,调整时应小心配合。

安徽三桥驱动器代理商

免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。

查看全部介绍
推荐产品  / Recommended Products