为什么要进行EMC合规性预测试?随着电气电子技术的发展,家用电器产品日益普及和电子化,深圳近场辐射,广播电视、邮电通讯和计算机网络的日益发达,电磁环境日益复杂和恶化,使得电气电子产品的电磁兼容性(EMC电磁干扰EMI与电磁抗EMS)问题也受到各国有关部门和生产企业的日益重视,深圳近场辐射。电子、电器产品的电磁兼容性(EMC)是一项非常重要的质量指标,它不只关系到产品本身的工作可靠性和使用安全性,而且还可能影响到其他设备和系统的正常工作,深圳近场辐射,关系到电磁环境的保护问题。在性能评价中,近场向远场的释放量构成了远场模式计算的源项。深圳近场辐射
辐射近场测量的可信域:对于平面辐射近场测量而言,由基本理论可知,在θ=-90°或90°(θ为场点偏离天线口面法线方向的方向角)时,这种方法的精度明显变差,因此平面辐射近场测量适用于天线方向图为单向笔形波束天线的测量,可信域(-θ,θ)中的θ值与近场扫描面和取样间距有如下关系(一维情况):θ=arctg[(L-X)/2d],(1)式中L为扫描面的尺寸;X为天线口径面的尺寸;d为扫描面到天线口径面的距离。辐射近场测量的研究与误差分析的探讨是同时进行的,研究结果表明:辐射近场测量的主要误差源为18项,大致分为4个方面,即探头误差、机械扫描定位误差、测量系统误差以及测量环境误差。对于平面辐射近场测量的误差分析已经完成,计算机模拟及各项误差的上界也已给出;柱面、球面辐射近场测量的误差分析尚未完成。深圳近场辐射虚数是指相位差为1/4周期的两个组件之间的相位差。
电磁兼容性(ElectromagneticCompatibility,简称EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值,即电磁干扰(ElectromagneticInterference简称EMI);另一方面是指器件对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性(ElectroMagneticSusceptibility,简称EMS)。电磁干扰(ElectromagneticInterference简称EMI)又分为传导干扰和辐射干扰两种。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络,在高速PCB及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其他系统或本系统内其他子系统的正常工作。
辐射近场区:辐射近场区介乎于感应近场区与辐射远场区之间。在此区域内,与距离的一次方、平方、立方成反比的场分量都占据一定的比例,场的角分布(即天线方向图)与离开天线的距离有关,也就是说,在不同的距离上计算出的天线方向图是有差别的。辐射远场区:辐射近场区之外就是辐射远场区,它是天线实际使用的区域。在此区域,场的幅度与离开天线的距离成反比,且场的角分布(即天线方向图)与离开天线的距离无关,天线方向图的主瓣、副瓣和零点都已形成。在天线的各元件间生成了电场,极性每半个周期变换一次。
近场成像实验与常规的近场散射实验相比,其明显差别就在于成像实验要进行扫频测量,这是理论所要求的。这样,测量系统就必须具备宽频带特性。发射、接收系统仪器的系统误差可以通过仪器自行校准进行消除,宽带发射、接收探头(天线)由于口径尺寸较大以及与目标之间的电磁耦合,所以对其发射、接收的电磁场必须进行修正,修正的方法是在它们发射、接收的电磁场中乘以复系数,系数的量值由理论值与测量值的比值来定。在此修正理论下,对金属长方体、圆柱体以及四尾翼导弹模型进行了实验测量,其成像结果是令人满意的。从物理概念上讲,无功近场区是一个储能场。深圳近场辐射
近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。深圳近场辐射
克服难题需要对智能终端设备进行有效的测试和测量,这样能确保准确地生成和分析信号,从而正确地测试和测量通信链路(如发射机和接收机)。采用的信号生成和分析解决方案应当提供快速的测量时间和切换速度,并且具有可扩展性,让测试工具可以适应用户不断变化的测试需要。另外解决方案还应具有灵活性,以确保它们支持当前和未来的制式。有了这些解决方案后,我们才能放心的在研发、调试、验证中寻找出合适的、较优的、低成本的方案从而缩短开发周期,进而抢先获得消费市场认可。深圳近场辐射
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。