>> 当前位置:首页 - 产品 - 深圳近场辐射检测 欢迎咨询 扬芯科技供应

深圳近场辐射检测 欢迎咨询 扬芯科技供应

信息介绍 / Information introduction

电场是由电压产生,主要的发射源包括一些未端接器件的线缆、连接高阻器件的PCB布线等。简单的电场探头类似一根小天线。有人甚至把同轴电缆前端的一小段屏蔽层剥开,露出芯线来构成简单的电场探头进行使用。在没有屏蔽设备的情况下,电场探头的问题是比较容易拾取到环境中存在的电磁波信号,如蜂窝通信的上下行信号,从而影响到整个测试系统的测量动态范围,深圳近场辐射检测。因为磁场是由电流产生的,所以常见的发射源包括芯片,器件的管脚、PCB上的布线、电源线及信号线缆。常见的磁场探头多为环状,深圳近场辐射检测,当磁场传播线和探头环面垂直的时候,测量数值很大。所以在测量过程中,深圳近场辐射检测,工程师一般需要旋转探头的方向来测量到很大的磁场数值,同时避免遗漏重要的发射源。天线应位于正弦波左侧起始的位置。深圳近场辐射检测

近场EMI测量的问题在于使用近场探头的测量结果和使用天线进行远场测量的结果无法直接进行数学转换。但是存在一个基本原理:近场的辐射越大,远场的辐射也必然越大。所以使用近场探头测量,实际上是一个相对量的测量,而不是精确的一定量测量。使用近场探头进行EMI预兼容测试时,我们常常把新被测件测试结果和一个已知合格被测件的近场探头测试(近场测试)结果进行比较,来预测EMI辐射泄漏测试(远场测试)的结果,而不是直接和符合EMI兼容标准的限制线进行比较。同时,测试的一定数值意义也不大,因为这个测试结果和诸多变量,包括探头的位置方向、被测件的形状等会密切相关。深圳近场辐射检测转发后的信号被调制为正弦波,电压呈极性变化。

展示了典型的半波偶极子天线是如何产生电场和磁场的。转发后的信号被调制为正弦波,电压呈极性变化,因此在天线的各元件间生成了电场,极性每半个周期变换一次。天线元件的电流产生磁场,方向每半个周期变换一次。电磁场互为直角正交。围绕着半波偶极子的电磁场包括一个电场和一个磁场,电磁场均为球形且互成直角。天线旁边的磁场呈球形或弧形,特别是距离天线近的磁场。这些电磁场从天线向外发出,越向外越不明显,特性也逐渐趋向平面。接收天线通常接收平面波。

实际测量时,用一个辐射单元(探头)进行一维扫描(等效的看,相当于同时激励的状态)并在计算机上用软件完成各个方向上的平面波的综合,因此,称其为数字紧缩场。这种测量方法的优点是很大降低了为实现平面波对测量系统硬件的要求。该方法不只能测量典型导体目标的RCS,而且能够对一些实用导体目标(如飞机、导弹等)小双站角的RCS进行测量。典型导体目标(如板、球、柱)小双站角的RCS测量已经完成,测得的不同方向照射待测目标后向散射方向图(照射波传播方向指向目标的方向规定为0°)及空间散射方向图与理论计算结果完全吻合;测量所得到的目标小双站角RCS的一定值与理论计算值相比较还有误差。近区场的电磁场强度比远区场大得多。

车载导航产品的辐射干扰包含宽带干扰和窄带干扰。车载导航仪内的DC/DC变换器工作在脉冲状态下,本身就会产生很强的宽带干扰。而车载电子产品的主控芯片的速度在不断提高,时钟上升沿的振铃就会产生丰富的谐波窄带干扰。对这些车载导航仪的辐射干扰的整改,需要对其电磁辐射干扰进行准确定位,才能对症下药,针对干扰源和传输路径的不同特点,有的放矢地应用屏蔽、滤波、接地等对策方法来压制电磁辐射干扰。此时,采用德国安诺尼(AARONIA)SPECTRAN频谱分析仪及其近场探头进行近场诊断就能准确地找到车载导航仪中的电磁辐射的干扰源。无功近场区:又称为电抗近场区,是天线辐射场中紧邻天线口径的一个近场区域。深圳近场辐射检测

一般情况下,对于电压高电流小的场源(如发射天线、馈线等)。深圳近场辐射检测

辐射近场测量的基本理论虽然已经成熟,且在实用中也取得了较多的研究成果,但对以下问题还应进行进一步的探讨研究:在前述的理论中,所有的理论公式都是在忽略多次散射耦合条件下而得出的,这些公式对常规天线的测量有一定的精度,但对低副瓣或很低副瓣天线测量就必需考虑这些因素,因此,需要建立严格的耦合方程。球面辐射近场测量能够计算除球心以外天线任意面上任意点的辐射场,但测量及计算时间都较长。柱面辐射近场测量能够计算天线全部面的辐射方向图,但在θ=-90°或90°时,柱面波展开式中汉克尔函数已无意义,所以,柱面辐射近场测量适用于天线方向图为扇形波束天线的测量。深圳近场辐射检测

免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。

查看全部介绍
推荐产品  / Recommended Products