原子吸收分光光度计是使用多的原子化器,但它很大的缺陷是原子化效率不高,原子蒸气停留时刻短,因而火焰中的自在原子浓度很低。原因是雾化效率低,待测物遭到大量气体的稀释,以及金属原子在火焰中易受氧化作用生成热安稳的难熔氧化物。另一个存在的问题是火焰中的化学反应不易控制,造成火焰温度不安稳,空气原子吸收分光光度计厂家供应,火焰各部分的温度也是不均匀的应非原子吸收分光光度计能够进步原子化效率,进步测量的灵敏度。进样量过小,吸收信号弱,不便于测量;进样量过大,在火焰原子化法中,对火焰发生冷却效应,在原子吸收分光光度计中,会增加除残的困难。在实际作业中,应测定吸光度随进样量的变化,空气原子吸收分光光度计厂家供应,空气原子吸收分光光度计厂家供应,到达很满意的吸光度的进样量,即为应挑选的进样量。原子吸收分光度计分析优点:灵敏度高。空气原子吸收分光光度计厂家供应
原子吸收分光光度计的干扰及消除方法:1、电离干扰在高温下原子电离,使基态原子的浓度减少,引起原子吸收信号降低,此种干扰称为电离干扰。电离效应随温度升高、电离平衡常数增大而增大,随被测元素浓度增高而减小。加入更易电离的碱金属元素,可以有效地消除电离干扰。2、光谱干扰光谱干扰包括谱线重叠、光谱通带内存在非吸收线、原子化池内的直流发射、分子吸收、光散射等。当采用锐线光源和交流调制技术时,**种因素一般可以不予考虑,主要考虑分子吸收和光散射地影响,它们是形成光谱背景的主要因素。3、原子吸收分光光度计分子吸收干扰分子吸收干扰是指在原子化过程中生成的气体分子、氧化物及盐类分子对辐射吸收而引起的干扰。光散射是指在原子化过程中产生的固体微粒对光产生散射,使被散射的光偏离光路而不为检测器所检测,导致吸光度值偏高。常用原子吸收分光光度计现货分子吸收分光光度计使用的标准溶液在4℃温度下可保存较长时间,放置室温后可正常使用。
原子吸收分光光度计的开展:1981年原子吸收分光光度计完成操作自动化。1984年首台连续氢化物发生器面世。1990年推出世界上先进的MarkV1焰燃烧头。1995年在线火焰自动进样器(SIPS8)研制成功并投入运用。1998年首台快速剖析火焰原子吸收220FS诞生。2002年世界上**火焰和石墨炉同时剖析的原子吸收光谱仪出产并投放市场。原子吸收分光光度计怎样用才正确?该岗位群主要是散布于冶金、环保、食物、制药、医疗卫生、化学、化工、农业等领域,主要从事环境和产品中金属物质的检验以及科学研制的质量操控等工作。
原子吸收分光光度计使用的首要限制是:该法只能进行无机元素的含量剖析,不能直接用于有机化合物的含量剖析和结构剖析;别的,惯例原子吸收分光光度计每测一种元素,要替换一次空心阴极灯光源,不能同时进行多元素剖析。所用仪器为原子吸收分光光度计,它由光源、原子化器、单色器、背景校正系统、自动进样系统和检测系统等组成。原子吸收分光光度计通常人体所需的常量或痕量元素以必定的浓度散布在人的体液和各种中,在人的生活动中起着不可或缺的作用,其主要生理功能是构成人体的组成部分,也是酶和维生素的组成部分。原子吸收分光光度计,利用空气—乙炔测定的元素可达30多种。
原子吸收光谱仪所检测,导致吸光度值偏高:光谱背景除了波长特征之外,还有时间、空间分布特征。分子吸收通常先于原子吸收信号之前产生,当有快速响应电路和记录装置时,可以从时间上分辨分子吸收和原子吸收信号。样品蒸气在石墨炉内分布的不均匀性,导致了背景吸收空间分布的不均匀性。提高温度使单位时间内蒸发出的背景物的浓度增加,同时也使分子解离增加。这两个因素共同制约着背景吸收。在恒温炉中,提高温度和升温速率,使分子吸收明显下降。原子吸收分光光度计的安全运用留意事项:在运输过程中遭到剧烈碰击的仪器,主机不能冒然通电。常用原子吸收分光光度计现货
原子吸收分光光度计一般灵敏度在ng/ml级(10-9),相对标准偏差2%左右。空气原子吸收分光光度计厂家供应
在农业、食品、卫生防疫、医药、环境等领域生物样品检测中,原子荧光光谱分析发展非常迅速。生物样品多种多样,包括食品、中(成)药、水产品、植物、动物组织及代谢物,待测元素含量低、有机基体是其主要特性。有关有机组分干扰原子荧光光谱法的研究报道不多,酸消解生物样品时,如果有机基体未被充分破坏,部分有机物以不饱和有机酸的形式残留在消解液中,从而可能对一些元素的测试产生干扰。研究证实,有机质对As、Sb、Bi、Cd的测定有明显影响,因此,元素全量测定时必须要对有机组分进行彻底消解。消解方法除传统敞开酸溶外,高压罐消解法和干灰化法也有应用,更具优势的微波消解法更是受到青睐。空气原子吸收分光光度计厂家供应
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。